## Exercise sheet 3

The content of the marked exercise (*) should be known for the exam.

1. For a fixed integer $n \geq 3$, Consider $H=\left\{\sigma \in S_{n} \mid \sigma(1)=1, \sigma(n)=n\right\} \subseteq S_{n}$, and $X_{i, j}:=\left\{\sigma \in S_{n} \mid \sigma(1)=i, \sigma(n)=j\right\} \subseteq S_{n}$, for $i \neq j$ and $1 \leq i, j \leq n$.
2. Prove that $H$ is a subgroup of $S_{n}$, whose right cosets $\sigma H$ are precisely the $X_{i, j}$.
3. For $\sigma \in S_{n}$, give a necessary and sufficient condition for $\sigma \in X_{i, j}$.
4. For $n \geq 4$, show that $H$ is not a normal subgroup of $S_{n}$. What happens for $n=3$ ?
5. Let $G$ be a group, and $H \leq G$ be a subgroup.
6. Prove that the inversion map $i: G \rightarrow G$ induces a well-defined map $G / H \rightarrow H \backslash G$.
7. Show that $|H \backslash G|=|G / H|$. When it is finite, we denote this cardinality by $[G: H]$, and call it the index of $H$ in $G$.
8. Now suppose that $K$ is an intermediate subgroup, $H \leq K \leq G$, and that $H$ has finite index in $G$. Prove that $[G: H]=[G: K][K: H]$ and in particular $H$ has finite index in $K$ and $K$ has finite index in $G$. [Hint: Decompose $G$ into cosets of $H$ starting from decompositions of $G$ into cosets of $K$ and of $K$ into cosets of $H$.]
9. Given two groups $H$ and $K$, we define on the cartesian product $H \times K$ the operation $(h, k) \cdot\left(h^{\prime}, k^{\prime}\right)=\left(h h^{\prime}, k k^{\prime}\right)$.
10. Show that $(H \times K, \cdot)$ is a group. It is called the direct product of the groups $H$ and $K$.
11. Consider the subsets $H^{\prime}=H \times\left\{1_{K}\right\}$ and $K^{\prime}=\left\{1_{H}\right\} \times K$ of $H \times K$. Prove that they are normal subgroups of $H \times K$, and that each element $x \in H \times K$ can be written in an unique way as a product $x=h^{\prime} k^{\prime}$, with $h^{\prime} \in H^{\prime}$ and $k^{\prime} \in K^{\prime}$.
12. Now suppose that $G$ is a group, and suppose that $H$ and $K$ are normal subgroups of $G$ such that $H \cap K=\left\{1_{G}\right\}$ and $H K=\{h k \in G \mid h \in H, k \in K\}=G$. Prove: $G$ is isomorphic to $H \times K$.
13. Let $G$ be the subgroup of $\mathrm{GL}_{2}(\mathbb{R})$ consisting of all matrices of the form $\left(\begin{array}{cc}a & b \\ 0 & 1\end{array}\right)$ for $a, b \in \mathbb{R}$ (and $a \neq 0$ ). Find a normal subgroup $H$ of $G$ such that $G / H$ is isomorphic to $\mathbb{R}^{\times}$, and write down an explicit isomorphism.
14. Let $G$ be a group. Prove that $\operatorname{Inn}(G)$ is a normal subgroup of $\operatorname{Aut}(G)$.
15. Let $G$ be a group. Define $Z(G)=\{x \in G \mid x z=z x$ for all $z \in G\}$. Show that $Z(G)$ is a normal subgroup of $G$ (it is called the center of $G$ ).
16. (*) Let $G$ be a group. For $a, b \in G$, we define the commutator of $a$ and $b$ via $[a, b]:=$ $a b a^{-1} b^{-1}$. Moreover, consider the commutator subgroup $[G, G]=\langle[a, b]\rangle_{a, b \in G}$.
17. Show that the inverse of a commutator is a commutator, and that $[a, b]=1_{G}$ if and only if $a$ and $b$ commute.
18. Show that $[G, G]$ is a normal subgroup of $G$.
19. Show that the quotient group $G /[G, G]$ is abelian. We denote it by $G^{\text {ab }}$, and call it the abelianization of $G$.
20. Suppose that $A$ is an abelian group, and that $\phi: G \rightarrow A$ is a group homomorphism. Prove: $[G, G] \subseteq \operatorname{ker}(\phi)$.
21. Deduce that for each $\phi: G \rightarrow A$ as above there exists a unique group homomorphism $\psi: G^{\mathrm{ab}} \rightarrow A$ such that $\phi=\psi \circ \pi$, where $\pi$ is the natural projection $G \rightarrow G^{\text {ab }}$.

Due to: 9 October 2014, 3 pm.

