Solutions of exercise sheet 3

The content of the marked exercise (*) should be known for the exam.

Recall that for G a group and H a subgroup of G we call a left (resp., right) coset of H any subset of G of the form $H g$ (resp., $g H$), with $g \in G$. We denote

$$
G / H=\{g H \mid g \in G\} \text { and } H \backslash G=\{H g \mid g \in G\}
$$

If H is a normal subgroup, we denote with G / H the quotient group.

1. For a fixed integer $n \geq 3$, Consider $H=\left\{\sigma \in S_{n} \mid \sigma(1)=1, \sigma(n)=n\right\} \subseteq S_{n}$, and $X_{i, j}:=\left\{\sigma \in S_{n} \mid \sigma(1)=i, \sigma(n)=j\right\} \subseteq S_{n}$, for $i \neq j$ and $1 \leq i, j \leq n$.
2. Prove that H is a subgroup of S_{n}, whose right cosets σH are precisely the $X_{i, j}$.
3. For $\sigma \in S_{n}$, give a necessary and sufficient condition for $\sigma \in X_{i, j}$.
4. For $n \geq 4$, show that H is not a normal subgroup of S_{n}. What happens for $n=3$?

Solution:

1. It is immediate to check that H is a subgroup: the identity fixes 1 and n, and if $\sigma, \tau \in H$, it is clear that both σ^{-1} and $\sigma \tau$ fix 1 and n.
Now take two couple of indexes $i \neq j$ and $i^{\prime} \neq j^{\prime}$, and suppose that $\sigma \in X_{i, j}$ and $\sigma^{\prime} \in X_{i^{\prime}, j^{\prime}}$. Then one has

$$
\begin{aligned}
\tau \in \sigma H & \Longleftrightarrow \sigma^{-1} \tau \in H \Longleftrightarrow \sigma^{-1} \tau(1)=1 \& \sigma^{-1} \tau(n)=n \Longleftrightarrow \\
& \Longleftrightarrow \tau(1)=\sigma(1) \& \tau(n)=\sigma(n) \Longleftrightarrow \tau \in X_{\sigma(1), \sigma(n)}
\end{aligned}
$$

so that $\sigma H=X_{\sigma(1), \sigma(n)}$ and the $X_{i, j}$ are all the right cosets of H.
2. For $i \neq j$ indexes, denote by $\tau_{i, j}$ the permutation which transpose 1 with i and n with j, and fixes all the non-mentioned elements. Then $\tau_{i, j}(1)=i$ and $\tau_{i, j}(n)=j$ by definition, so that $X_{i, j}=\tau_{i, j} H$ by the previous point. Then we have the following equivalent conditions:

$$
\sigma \in X_{i, j} \Longleftrightarrow \sigma \in \tau_{i, j} H \Longleftrightarrow \tau_{i, j}^{-1} \sigma \in H \Longleftrightarrow \exists h \in H: \sigma=\tau_{i, j} \circ h
$$

3. Suppose that $n \geq 4$. Then $1<2<3<n$. Call $\tau=(23)$ and $\sigma=(12)$. Clearly, $\tau \in H$. But $\sigma \tau \sigma^{-1}=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\binom{1}{2}=\left(\begin{array}{ll}1 & 3\end{array}\right) \notin H$, so that $\sigma H \sigma^{-1} \nsubseteq H$ and H is not normal.
If $n=3$, any permutation $\sigma \in H$ is forced to fix 2 as well, so that $H=1$, which is clearly a normal subgroup, since it is stable under conjugation.
4. Let G be a group, and $H \leq G$ be a subgroup.
5. Prove that the inversion map $i: G \rightarrow G$ induces a well-defined map $G / H \rightarrow H \backslash G$.
6. Show that $|H \backslash G|=|G / H|$. When it is finite, we denote this cardinality by $[G: H]$, and call it the index of H in G.
7. Now suppose that K is an intermediate subgroup, $H \leq K \leq G$, and that H has finite index in G. Prove that $[G: H]=[G: K][K: H]$ and in particular H has finite index in K and K has finite index in G. [Hint: Decompose G into cosets of H starting from decompositions of G into cosets of K and of K into cosets of H.]

Solution:

1. A map $\bar{i}: G / H \rightarrow H \backslash G$ induced by i should be defined by $g H \mapsto H g^{-1}$. We prove that this is a well-defined map. We have

$$
g H=g^{\prime} H \Longleftrightarrow g^{-1} g^{\prime} \in H \Longleftrightarrow H g^{-1} g^{\prime}=H \Longleftrightarrow H g^{-1}=H g^{\prime-1},
$$

which proves not only that \bar{i} is well-defined (by considering the implication \Rightarrow), but also that it is injective (by considering the converse implication).
2. The map \bar{i} from the previous point is surjective (since for each $g \in G$ we have $\bar{i}\left(g^{-1} H\right)=H g$), and being it also injective as we saw, it is a bijection. Hence $|G / H|=|H \backslash G|$.
3. Since cosets form a partition of a group, we can choose (using AC) sets of indexes I and J and families of elements $\left(g_{i}\right)_{i \in I}$ and $\left(k_{j}\right)_{j \in J}$, with $g_{i} \in G$ and $k_{j} \in K$ such that we have disjoint unions

$$
G=\bigcup_{i \in I} g_{i} K \text { and } K=\bigcup_{j \in J} k_{j} H .
$$

Notice that $|I|=[G: K]$ and $|J|=[K: H]$. Then

$$
G=\bigcup_{i \in I} g_{i} \bigcup_{j \in J} k_{j} H=\bigcup_{(i, j) \in I \times J} g_{i} k_{j} H \quad(* *),
$$

and if we prove that this union is disjoint, then we will get $|I \times J|=[G: H]$. Suppose that $g_{i} k_{j} H \cap g_{i^{\prime}} k_{j^{\prime}} H$ is non-empty, then there exist $h, h^{\prime} \in H$ such that $x=g_{i} k_{j} h=g_{i^{\prime}} k_{j^{\prime}} h^{\prime}$. Since $k_{j} h, k_{j^{\prime}} h^{\prime} \in K$, we have $x \in g_{i} K \cap g_{i^{\prime}} K \neq \varnothing$, so that $i=i^{\prime}$ by construction. Then $g_{i} k_{j} h=g_{i} k_{j^{\prime}} h^{\prime}$ gives $k_{j} h=k_{j^{\prime}} h^{\prime}$, and since this other element $g_{i}^{-1} x$ lies in $k_{j} H \cap k_{j^{\prime}} H$, we also get $j=j^{\prime}$. This proves that the union $(* *)$ is disjoint. Then $|I \times J|=[G: H]<\infty$ by hypothesis, and since I and J are not empty, set theory gives $|I|,|J|<\infty$, and

$$
[G: H]=|I \times J|=|I| \cdot|J|=[G: K][K: H] .
$$

3. Given two groups H and K, we define on the cartesian product $H \times K$ the operation $(h, k) \cdot\left(h^{\prime}, k^{\prime}\right)=\left(h h^{\prime}, k k^{\prime}\right)$.
4. Show that $(H \times K, \cdot)$ is a group. It is called the direct product of the groups H and K.
5. Consider the subsets $H^{\prime}=H \times\left\{1_{K}\right\}$ and $K^{\prime}=\left\{1_{H}\right\} \times K$ of $H \times K$. Prove that they are normal subgroups of $H \times K$, and that each element $x \in H \times K$ can be written in an unique way as a product $x=h^{\prime} k^{\prime}$, with $h^{\prime} \in H^{\prime}$ and $k^{\prime} \in K^{\prime}$.
6. Now suppose that G is a group, and suppose that H and K are normal subgroups of G such that $H \cap K=\left\{1_{G}\right\}$ and $H K=\{h k \in G \mid h \in H, k \in K\}=G$. Prove: G is isomorphic to $H \times K$.

Solution:

1. We have that the operation - on $H \times K$ inherits associativity from associativity of the multiplications in H and K. The element $\left(1_{G}, 1_{H}\right)$ is readily checked to be neutral, and calling i_{H} and i_{K} the inversion maps of H and K, we obtain that $i_{H} \times i_{K}: H \times K \mapsto H \times K$, sending $(h, k) \mapsto\left(i_{H}(h), i_{K}(k)\right)$ is an inversion map for $H \times K$. We can then conclude that $H \times K$ is a group with the operation • just defined.
2. It is immediate to check that the projection maps $\pi_{1}: H \times K \rightarrow H$ and π_{2} : $H \times K \rightarrow K$ are group homomorphisms. Then $H^{\prime}=H \times\left\{1_{K}\right\}=\operatorname{ker}\left(\pi_{2}\right)$ and $K^{\prime}=\left\{1_{H}\right\} \times K=\operatorname{ker}\left(\pi_{1}\right)$ are normal subgroups of $H \times K$.
For $(h, k) \in H \times K, h^{\prime}=\left(h_{0}, 1\right) \in H^{\prime}$ and $k^{\prime}=\left(1, k_{0}\right) \in K^{\prime}$, it is clear that $(h, k)=h^{\prime} k^{\prime}$ if and only if $h=h_{0}$ and $k=k_{0}$, so that there exists a unique decomposition of the required form.
3. First, let us prove that the elements of H commute with the elements of K. Let $h \in$ H and $k \in K$. The equality $h k=k h$ is equivalent to the equality $h k h^{-1} k^{-1}=1_{G}$. To show this, notice that $h k h^{-1} \in K$ (being K a normal subgroup) and $k h^{-1} k \in H$ (being H a normal subgroup), and that the left hand side lies in both H and K. Being the intersection of the two subgroups trivial, we get $h k h^{-1} k^{-1}=1_{G}$. Hence elements in H commute with elements in K.
Now let us define the following map, where the group structure on $H \times K$ is defined as before:

$$
\begin{aligned}
\phi: H \times K & \rightarrow G \\
\quad(h, k) & \mapsto h k
\end{aligned}
$$

Then ϕ is a group homomorphism: for every $h, h^{\prime} \in H$ and $k, k^{\prime} \in K$ we have indeed

$$
\phi\left((h, k)\left(h^{\prime}, k^{\prime}\right)\right)=\phi\left(\left(h h^{\prime}, k k^{\prime}\right)\right)=h h^{\prime} k k^{\prime} \stackrel{*}{=} h k h^{\prime} k^{\prime}=\phi(h, k) \cdot \phi\left(h^{\prime}, k^{\prime}\right),
$$

where in passage $*$ we used the fact that elements of H commute with elements of K.
Since $H K=G$ by hypothesis, we have that ϕ is surjective. As concerns the kernel, notice that if $h k=1$ for $h \in H$ and $k \in K$, then one has $h=k^{-1} \in H \cap K=\left\{1_{G}\right\}$, so that the $\operatorname{ker}(\phi)=\left\{1_{G}\right\}$. In conclusion, ϕ establish an isomorphism of groups between G and $H \times K$ as desired.
4. Let G be the subgroup of $\mathrm{GL}_{2}(\mathbb{R})$ consisting of all matrices of the form $\left(\begin{array}{cc}a & b \\ 0 & 1\end{array}\right)$ for $a, b \in \mathbb{R}$ (and $a \neq 0$). Find a normal subgroup H of G such that G / H is isomorphic to \mathbb{R}^{\times}, and write down an explicit isomorphism.

Solution:

G is easily checked to be a subgroup of $\mathrm{GL}_{2}(\mathbb{R})$. In particular we have the formula

$$
\left(\begin{array}{cc}
a & b \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
a^{\prime} & b^{\prime} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
a a^{\prime} & a b^{\prime}+b \\
0 & 1
\end{array}\right), \forall 0 \neq a, b \in \mathbb{R}
$$

This formula implies that the projection of the first entry $\pi: G \rightarrow \mathbb{R}^{\times}$, sending $\left(\begin{array}{cc}a & b \\ 0 & 1\end{array}\right) \mapsto a$ is a group homomorphism. It is clearly surjective, so that $G / \operatorname{ker}(\pi)$ is isomorphic to \mathbb{R}^{\times}by the first isomorphism theorem. Hence we get that G / H is isomorphic to \mathbb{R}^{\times}for

$$
H=\operatorname{ker}(\pi)=\left\{\left.\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) \right\rvert\, b \in \mathbb{R}\right\}
$$

More explicitly, the map π factors as $\pi=\bar{\pi} \circ p$,

$$
G \xrightarrow{p} G / H \xrightarrow{\bar{\pi}} \mathbb{R}^{\times}
$$

where $p: g \mapsto g H$ is the quotient map and $\bar{\pi}$ is the unique group isomorphism sending $\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) H \mapsto a$.
5. Let G be a group. Prove that $\operatorname{Inn}(G)$ is a normal subgroup of $\operatorname{Aut}(G)$.

Solution:

Recall that $\operatorname{Inn}(G)=\left\{\sigma_{c} \mid c \in G\right\} \leq \operatorname{Aut}(G)$, where $\sigma_{c}(x):=c x c^{-1}$. To prove that this subgroup is normal, look at the conjugacy class in $\operatorname{Aut}(G)$ of any σ_{c}. For $\tau \in \operatorname{Aut}(G)$ and $c \in G$ we have

$$
\forall x \in G,\left(\tau \sigma_{c} \tau^{-1}\right)(x)=\tau\left(c \tau^{-1}(x) c^{-1}\right)=\tau(c) x \tau(c)^{-1},
$$

so that $\tau \sigma_{c} \tau^{-1}=\sigma_{\tau(c)}$. This gives $\tau H \tau^{-1} \subseteq H$ for every $\tau \in \operatorname{Aut}(\mathrm{G})$, so that $\operatorname{Inn}(G)$ is a normal subgroup of $\operatorname{Aut}(G)$.
6. (*) Let G be a group. For $a, b \in G$, we define the commutator of a and b via $[a, b]:=$ $a b a^{-1} b^{-1}$. Moreover, consider the commutator subgroup $[G, G]=\langle[a, b]\rangle_{a, b \in G}$.

1. Show that the inverse of a commutator is a commutator, and that $[a, b]=1_{G}$ if and only if a and b commute.
2. Show that $[G, G]$ is a normal subgroup of G.
3. Show that the quotient group $G /[G, G]$ is abelian. We denote it by $G^{\text {ab }}$, and call it the abelianization of G.
4. Suppose that A is an abelian group, and that $\phi: G \rightarrow A$ is a group homomorphism. Prove: $[G, G] \subseteq \operatorname{ker}(\phi)$.
5. Deduce that for each $\phi: G \rightarrow A$ as above there exists a unique group homomorphism $\psi: G^{\text {ab }} \rightarrow A$ such that $\phi=\psi \circ \pi$, where π is the natural projection $G \rightarrow G^{\mathrm{ab}}$.

Solution:

1. For each $a, b \in G$ we have that $[a, b][b, a]=a b a^{-1} b^{-1} b a b^{-1} a^{-1}=1$, so that the inverse of the commutator $[a, b]$ is $[b, a]$. Moreover, $[a, b]=1_{G}$ if and only if $a b a^{-1} b^{-1}=1_{G}$, which is equivalent to $a b=b a$.
2. If H is a subgroup of G generated by a set S, one can prove that H is normal if and only if $g S g^{-1} \subseteq H$ for every $g \in G$, and check normality just on generators. But we will check normality directly on an element of the whole subgroup.
Let $u \in H$ (Watch out: this does not mean that u is itself a commutator!), and $x \in G$. Then

$$
x u x^{-1}=u u^{-1} x u x^{-1}=u\left[u^{-1}, x\right] \in[G, G] .
$$

In conclusion, $[G, G]$ is normal in G.
3. For every $x, y \in G$, one has $x y=[x, y] y x$. Hence the classes of x and y in the quotient group $G /[G, G]$ do commute.
4. For each $a, b \in G$ we obtain

$$
\phi([a, b])=\phi(a) \phi(b) \phi(a)^{-1} \phi(b)^{-1}=\phi\left(a b a^{-1} b^{-1}\right)[\phi(a), \phi(b)]=1_{A}
$$

since A is abelian. Then $[G, G] \subseteq \operatorname{ker}(\phi)$, since it is generated by elements in the kernel.
5. For each $g \in G$, we denote by $\bar{g}=\pi(g)$ the corresponding class in $G^{\mathrm{ab}}=G /[G, G]$. If a map $\psi: G^{\text {ab }} \rightarrow A$ realises $\phi=\psi \circ \pi$, then $\psi(\pi(g))=\phi(g)$, so that (being π surjective) there cannot exist two such maps which are different. To prove that $\psi(\bar{g})=\phi(g)$ well defines a map ψ, suppose that $\bar{g}_{1}=\overline{g_{2}}$. Then there exists $u \in[G, G]$ such that $g_{1}=u g_{2}$, and this implies that $\phi\left(g_{1}\right)=\phi\left(u g_{2}\right)=\phi(u) \psi\left(g_{2}\right)=$ $\phi\left(g_{2}\right)$ by applying the previous point. Hence ψ is a well-defined map, the unique one such that $\phi=\psi \circ \pi$. Finally, ψ is a group homomorphism:

$$
\psi(\bar{g} \bar{h})=\phi(g h)=\phi(g) \phi(h)=\psi(\bar{g}) \psi(\bar{h}) .
$$

7. Let G be a group. Define $Z(G)=\{x \in G \mid x z=z x$ for all $z \in G\}$. Show that $Z(G)$ is a normal subgroup of G (it is called the center of G).

Solution:

We have a group homomorphism $\gamma: G \rightarrow \operatorname{Aut}(G)$ sending $g \mapsto \sigma_{g}$, where σ_{g} is the conjugation by g, as defined in the previous exercise. It is indeed immediate to check on elements $x \in G$ that $\sigma_{g} \sigma_{h}=\sigma_{g h}$ for every $g, h \in G$. Then we get

$$
\operatorname{ker}(\gamma)=\left\{g \in G \mid \forall x \in X: g x g^{-1}=x\right\}=\{g \in G \mid \forall x \in X: g x=x g\}=Z(G),
$$

so that the center of G is a normal of subgroup of G.
This can also be proved directly. First, notice that $1_{G} \in Z(G)$. Moreover, for $g, h \in$ $Z(G)$ we have that for every $x \in X$ one gets $g h x=g x h=x g h$, so that $g h \in Z(G)$. Also g^{-1} lies in the center: $g^{-1} x=\left(x^{-1} g\right)^{-1}=\left(g x^{-1}\right)^{-1}=x g^{-1}$. This proves that $Z(G) \leq G$. Moreover, for every $g \in Z(G)$ and $x \in G$ one has $x g x^{-1}=g x x^{-1}=g$, so that $x Z(G) x^{-1} \subseteq Z(G)$ for every $x \in G$ and $Z(G)$ is normal in G.

