D-MATH Prof. Emmanuel Kowalski Algebra I

Exercise sheet 4

The content of the marked exercises (*) should be known for the exam.

- **1.** Prove the following two properties of groups:
 - 1. Every subgroup of a cyclic group is cyclic [Recall, we say that a group G is cyclic if $G = \langle g \rangle$ for some $g \in G$. A cyclic group can be either finite or infinite.]
 - 2. Given a group G, if $\operatorname{Aut}(G)$ is cyclic then G is abelian [*Hint:* Consider the conjugation map $G \to \operatorname{Aut}(G)$.]
- **2.** Let H, K be subgroups of G, and assume that hK = Kh for every $h \in H$.
 - 1. Show that:
 - $H \cap K \trianglelefteq H;$
 - $HK \leq G;$
 - $K \trianglelefteq HK$.
 - 2. Prove that there is an isomorphism $H/(H \cap K) \xrightarrow{\sim} HK/K$ [Hint: Define first a group homomorphism $H \longrightarrow HK/K$]
- **3.** Let G be a group with a normal subgroup $H \leq G$ and consider the canonical projection $\pi: G \to G/H$ sending $g \mapsto gH$. Prove the following statements:
 - 1. If $K \leq G/H$, then $\pi^{-1}(K)$ is a subgroup of G containing H.
 - 2. Conversely, if we have an intermediate subgroup $H \leq K' \leq G$, then $\pi(K') \leq G/H$.
 - 3. The map

$$f: \left\{ \begin{array}{c} \text{subgroups } K', \\ H \le K' \le G \end{array} \right\} \longrightarrow \left\{ \begin{array}{c} \text{subgroups } \\ K \le G/H \end{array} \right\}$$
$$K' \longmapsto \pi(K')$$

is a bijection.

4. For every $H \leq K' \leq G$, one has that $K' \leq G$ if and only if $f(K') \leq G/H$.

4. Let G be a group and $H \leq G$ with [G:H] = 2. Prove: $H \leq G$.

- 5. (*) Let A be a simple finite abelian group.
 - 1. Show that A is generated by an element $x \in A$ different from 1_A .
 - 2. Show that $A \cong \mathbb{Z}/k\mathbb{Z}$ where k is a prime. Conversely, show that $\mathbb{Z}/p\mathbb{Z}$ is a simple group for every prime number p.
- 6. (*) Given two group homomorphisms $\alpha: H \to G$ and $\beta: G \to K$ we say that

$$H \xrightarrow{\alpha} G \xrightarrow{\beta} K$$

is an exact sequence if $Im(\alpha) = ker(\beta)$. Moreover, given group morphisms

$$(**) \quad \cdots \longrightarrow G_{n-2} \xrightarrow{\alpha_{n-2}} G_{n-1} \xrightarrow{\alpha_{n-1}} G_n \xrightarrow{\alpha_n} G_{n+1} \xrightarrow{\alpha_{n+1}} G_{n+2} \longrightarrow \cdots$$

we say that (**) is an exact sequence if $G_{i-1} \xrightarrow{\alpha_{i-1}} G_i \xrightarrow{\alpha_i} G_{i+1}$ is an exact sequence for every *i*.

We denote by 1 the trivial group $\{1\}$. Notice that for every group G there exists a unique homomorphism $1 \to G$ and a unique homomorphism $G \to 1$.

- 1. Prove that for any group homomorphism $f: G \to H$ one has:
 - $1 \to G \xrightarrow{f} H$ is an exact sequence if and only if f is injective;
 - $G \xrightarrow{f} H \to 1$ is an exact sequence if and only if f is surjective.
- 2. We call a short exact sequence any exact sequence of groups of the form

$$1 \to H \to G \to K \to 1.$$

Show that given the exact sequence above, there exists a subgroup $H' \trianglelefteq G$ such that $H \cong H'$ and $K \cong G/H'$.

Due to: 16 October 2014, 3 pm.