D-MATH Prof. Emmanuel Kowalski Algebra I

Exercise sheet 6

The content of the marked exercises (*) should be known for the exam.

1. Consider the set

$$\mathbb{H} = \left\{ \left(\begin{array}{cc} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{array} \right) : \alpha, \beta \in \mathbb{C} \right\} \subset M_2(\mathbb{C}).$$

Prove:

- 1. It is a subring of $M_2(\mathbb{C})$, the ring of matrices with entrywise sum and row-timescolumn multiplication;
- 2. It is a division ring (it is called the ring of Hamilton quaternions);
- 3. It is non-commutative;
- 4. \mathbb{H} is a \mathbb{R} -vector space of dimension 4, and there exists an \mathbb{R} -basis (1, i, j, k) for \mathbb{H} such that $i^2 = j^2 = k^2 = -1$, ij = k = -ji, jk = i = -kj and ki = j = -ik.
- **2.** Let X be a set, A a commutative ring and $C(X, A) = \{f : X \to A\}$ be the ring of functions $X \to A$, with pointwise sum and multiplication. Given a subset $Y \subseteq X$, define

$$I_Y = \{ f \in C(X, A) : f|_Y = 0 \}.$$

Prove that I_Y is an ideal, and prove that it is principal by finding a generator.

3. We say that a ring A is simple if $A \neq 0$ and the only ideals of A are 0 and A. Prove: $M_n(\mathbb{R})$ is a simple ring for every $n \in \mathbb{Z}_{>0}$.

- **4.** Let $A \neq 0$ be a ring. We say that $e \in A$ is *idempotent* if $e^2 = e$. We say that an idempotent element $e \in A$ is non-trivial if $e \notin \{0, 1\}$.
 - 1. Prove: if $e \in A$ is idempotent, then 1 e is also idempotent.
 - 2. Suppose that $e \neq 1$ is idempotent in A. Prove: e is not a unit of A.
 - 3. Prove that if $e \in A$ is idempotent, then $B = eAe = \{eae : a \in A\}$, endowed with sum and multiplications from A, is a ring with $0_B = 0_A$ and $1_B = e$.
 - 4. Find a non-trivial idempotent element of $A = \mathbb{Z}/10\mathbb{Z}$.
- 5. (*) Consider the set

 $X = \{(f, \varepsilon) | \varepsilon \in \mathbb{R}_{>0}, f :] - \varepsilon, \varepsilon[\to \mathbb{C} \text{ continuous map} \}.$

Define a relation \sim on X via

$$(f_1, \varepsilon_1) \sim (f_2, \varepsilon_2) \iff (\exists \varepsilon \in \mathbb{R}_{>0}, \ \varepsilon \le \min(\varepsilon_1, \varepsilon_2) : f_1|_{|-\varepsilon,\varepsilon|} = f_2|_{|-\varepsilon,\varepsilon|}).$$

- 1. Show that \sim is an equivalence relation. We write $[(f, \varepsilon)]$ for the class of (f, ε) , and $A = X/\sim$.
- 2. Show that the following are well defined maps $A \times A \rightarrow A$, i.e. binary operations on A:

$$\begin{split} &[(f_1,\varepsilon_1)] + [(f_2,\varepsilon_2)] = [(f_1|_{]-\varepsilon,\varepsilon[} + f_2|_{]-\varepsilon,\varepsilon[},\varepsilon)],\\ &[(f_1,\varepsilon_1)] \cdot [(f_2,\varepsilon_2)] = [(f_1|_{]-\varepsilon,\varepsilon[} \cdot f_2|_{]-\varepsilon,\varepsilon[},\varepsilon)],\\ &\text{where } \varepsilon = \min(\varepsilon_1,\varepsilon_2), \end{split}$$

and that they define a ring structure on A with $0_A = [(0,1)]$ and $1_A = [(1,1)]$. 3. Show that $(f,\varepsilon) \mapsto f(0)$ defines a ring homomorphism $A \to \mathbb{C}$. Deduce that $I = \{[(f,\varepsilon)]|f(0) = 0\}$ is an ideal of A, and that $A/I \cong \mathbb{C}$.

4. Prove: $A^{\times} = A \setminus I$.

The ring A we defined is called the ring of "germs of continuous functions at 0".

Due to: 30 October 2014, 3 pm.