Exercise sheet 6

The content of the marked exercises (*) should be known for the exam.

1. Consider the set

$$
\mathbb{H}=\left\{\left(\begin{array}{rr}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right): \alpha, \beta \in \mathbb{C}\right\} \subset M_{2}(\mathbb{C}) .
$$

Prove:

1. \mathbb{H} is a subring of $M_{2}(\mathbb{C})$, the ring of matrices with entrywise sum and row-timescolumn multiplication;
2. \mathbb{H} is a division ring (it is called the ring of Hamilton quaternions);
3. \mathbb{H} is non-commutative;
4. \mathbb{H} is a \mathbb{R}-vector space of dimension 4 , and there exists an \mathbb{R}-basis $(\mathbb{1}, \dot{i}, \mathfrak{j}, \mathbb{k})$ for

5. Let X be a set, A a commutative ring and $C(X, A)=\{f: X \rightarrow A\}$ be the ring of functions $X \rightarrow A$, with pointwise sum and multiplication. Given a subset $Y \subseteq X$, define

$$
I_{Y}=\left\{f \in C(X, A):\left.f\right|_{Y}=0\right\} .
$$

Prove that I_{Y} is an ideal, and prove that it is principal by finding a generator.
3. We say that a ring A is simple if $A \neq 0$ and the only ideals of A are 0 and A. Prove: $M_{n}(\mathbb{R})$ is a simple ring for every $n \in \mathbb{Z}_{>0}$.
4. Let $A \neq 0$ be a ring. We say that $e \in A$ is idempotent if $e^{2}=e$. We say that an idempotent element $e \in A$ is non-trivial if $e \notin\{0,1\}$.

1. Prove: if $e \in A$ is idempotent, then $1-e$ is also idempotent.
2. Suppose that $e \neq 1$ is idempotent in A. Prove: e is not a unit of A.
3. Prove that if $e \in A$ is idempotent, then $B=e A e=\{e a e: a \in A\}$, endowed with sum and multiplications from A, is a ring with $0_{B}=0_{A}$ and $1_{B}=e$.
4. Find a non-trivial idempotent element of $A=\mathbb{Z} / 10 \mathbb{Z}$.
5. (*) Consider the set

$$
X=\left\{(f, \varepsilon) \mid \varepsilon \in \mathbb{R}_{>0}, f:\right]-\varepsilon, \varepsilon[\rightarrow \mathbb{C} \text { continuous map }\}
$$

Define a relation \sim on X via

$$
\left(f_{1}, \varepsilon_{1}\right) \sim\left(f_{2}, \varepsilon_{2}\right) \Longleftrightarrow\left(\exists \varepsilon \in \mathbb{R}_{>0}, \varepsilon \leq \min \left(\varepsilon_{1}, \varepsilon_{2}\right):\left.f_{1}\right|_{]-\varepsilon, \varepsilon[}=\left.f_{2}\right|_{]-\varepsilon, \varepsilon[}\right)
$$

1. Show that \sim is an equivalence relation. We write $[(f, \varepsilon)]$ for the class of (f, ε), and $A=X / \sim$.
2. Show that the following are well defined maps $A \times A \rightarrow A$, i.e. binary operations on A :

$$
\begin{aligned}
& {\left[\left(f_{1}, \varepsilon_{1}\right)\right]+\left[\left(f_{2}, \varepsilon_{2}\right)\right]=\left[\left(\left.f_{1}\right|_{]-\varepsilon, \varepsilon[}+\left.f_{2}\right|_{]-\varepsilon, \varepsilon}[, \varepsilon)\right]\right.} \\
& {\left[\left(f_{1}, \varepsilon_{1}\right)\right] \cdot\left[\left(f_{2}, \varepsilon_{2}\right)\right]=\left[\left(\left.\left.f_{1}\right|_{]-\varepsilon, \varepsilon[} \cdot f_{2}\right|_{]-\varepsilon, \varepsilon[}, \varepsilon\right)\right],} \\
& \text { where } \varepsilon=\min \left(\varepsilon_{1}, \varepsilon_{2}\right)
\end{aligned}
$$

and that they define a ring structure on A with $0_{A}=[(0,1)]$ and $1_{A}=[(1,1)]$.
3. Show that $(f, \varepsilon) \mapsto f(0)$ defines a ring homomorphism $A \rightarrow \mathbb{C}$. Deduce that $I=\{[(f, \varepsilon)] \mid f(0)=0\}$ is an ideal of A, and that $A / I \cong \mathbb{C}$.
4. Prove: $A^{\times}=A \backslash I$.

The ring A we defined is called the ring of "germs of continuous functions at 0 ".

Due to: 30 October 2014, 3 pm .

