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Prof. Emmanuel Kowalski

Solutions of exercise sheet 6

The content of the marked exercises (*) should be known for the exam.

1. Consider the set

H =

{(
α −β̄
β ᾱ

)
: α, β ∈ C

}
⊂M2(C).

Prove:

1. H is a subring of M2(C), the ring of matrices with entrywise sum and row-times-
column multiplication;

2. H is a division ring (it is called the ring of Hamilton quaternions);

3. H is non-commutative;

4. H is a R-vector space of dimension 4, and there exists an R-basis (1, i, j,k) for
H such that i2 = j2 = k2 = −1, ij = k = −ji, jk = i = −kj and ki = j = −ik.

Solution:

1. To prove that H is a subring of M2(C), we have to check that it is a subgroup
with respect to addiction and a submonoid with respect to multiplication (that is,
it contains 1 and is stable under multiplication), since the distributive property is
inherited from the superset M2(C).

First, notice that chosing α = β = 0 one obtains the zero matrix, which is the
neutral element of the entrywise addition, and chosing α = 1 and β = 0 one
obtains the identity matrix, which is the neutral element of the row-times-column
multiplication. Hence 0M2(C), 1M2(C) ∈ H.

Now, for all αi, βi ∈ C, i = 1, 2, we have (using the facts that complex conjugation
respects sum and multiplication and that ¯̄z = z for every z ∈ C):(

α1 −β̄1
β1 ᾱ1

)
−
(
α2 −β̄2
β2 ᾱ2

)
=

(
α1 − α2 −(β1 − β2)
β1 − β2 (α1 − α2)

)
∈M2(C), and(

α1 −β̄1
β1 ᾱ1

)
·
(
α2 −β̄2
β2 ᾱ2

)
=

(
α1α2 − β̄1β2 −(ᾱ1β2 + β1α2)

ᾱ1β2 + β1α2 α1α2 − β̄1β2

)
∈M2(C).

This proves that H is a subring of M2(C), as desired.
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2. Let a ∈ H. We know from linear algebra that a has an inverse in M2(C) if and

only if det(a) 6= 0. Supposing that a =

(
α −β̄
β ᾱ

)
, we have that det(a) =

αᾱ+ ββ̄ = |α|2 + |β|2 ∈ R≥0, which is zero only when α = β = 0, as the absolute
value of any non-zero complex numbers is always positive. Hence if a ∈ H \ {0},
then a has an inverse matrix in M2(C),

a−1 =

(
α −β̄
β ᾱ

)−1
=

1

|a|2 + |b|2

(
ᾱ β̄
−β α

)
=

(
α0 −β̄0
β0 ᾱ0

)
∈ H,

where one puts α0 = ᾱ(|a|2 + |b|2)−1 and β0 = −β(|a|2 + |b|2)−1. In conclusion,
every non-zero matrix in H has an inverse in H, so that H is a division ring.

3. From the multiplication formula above it is already clear that interchanging the
indexes 1 and 2 we can get a different result. For example, take two matrices
a1 and a2 corresponding to chosing α1 = β1 = α2 = i, and β2 = 1. Then the
upper-left entry of a1 · a2 is α1α2 − β̄1β2 = −1 + i, while the upper-left entry
of a2 · a1 is α1α2 − β1β̄2 = −1 − i, so that a1 · a2 6= a2 · a1. Hence H is not a
commutative ring.

4. H is an R vector space of dimension 4 because every element a ∈ H is determined
by two complex numbers, and a complex numbers are determined by two real
numbers. This can be formalized by considering the map

φ : R4 → H

(a, b, c, d) 7→
(

a+ ib c+ id
−c+ id a− ib

)
It is immediately checked that this map respects sum and multiplication by scalars
in R, so that it is an R-linear map. Moreover, it is clear that the only quadruple
mapped to the zero matrix is (0, 0, 0, 0), so that the kernel is trivial and φ is
injective. Surjectivity is also evident, so that φ is an isomorphism of R-vector
space and dimR(H) = 4.

Mapping the canonical basis (e1, e2, e3, e4) of R4 (where ei is the quadruple with
1 in the i-th position and 0 elsewhere) via φ, on gets a basis for H. This basis is

B =

((
1 0
0 1

)
,

(
i 0
0 −i

)
,

(
0 1
−1 0

)
,

(
0 i
i 0

))
.

Then one has(
i 0
0 −i

)2

=

(
0 1
−1 0

)2

=

(
0 i
i 0

)2

= −
(

1 0
0 1

)
,(

i 0
0 −i

)
·
(

0 1
−1 0

)
=

(
0 i
i 0

)
,(

0 1
−1 0

)
·
(

0 i
i 0

)
=

(
i 0
0 −i

)
, and(

0 1
−1 0

)
·
(

0 i
i 0

)
=

(
i 0
0 −i

)
.
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This means that rewriting the basis above as B = (1, i, j,k), one has the properties
i2 = j2 = k2 = −1, ij = k, jk = i and ki = j. Then the multiplication in the
reversed order automatically satisfy the required condition. Indeed all the three
matrices i, j,k satisfy the equality x2 = −1 in H, which is equivalent (assuming
invertibility of x) to x−1 = −x. Then the equality ij = k gives j−1i−1 = k−1, i.e.
ji = −k, and similarly can be done for the other equalities.

2. Let X be a set, A a commutative ring and C(X,A) = {f : X → A} be the ring of
functions X → A, with pointwise sum and multiplication. Given a subset Y ⊆ X,
define

IY = {f ∈ C(X,A) : f |Y = 0}.

Prove that IY is an ideal, and prove that it is principal by finding a generator.

Solution:

Notice that if X = ∅, then C(X,A) only contains the empty map, so that it is the zero
ring (as it has only one element), and IY is the zero ideal, which is principal (generated
by 0). Hence we will exclude the case in which X = ∅.

As seen in class, the restriction map % : C(X,A)→ C(Y,A) sending f 7→ f |Y is a ring
homomorphism. Then ker(%) = IY by definition, so that IY is an ideal in C(X,A).

A generator of IY as a principal ideal needs to be a map f : X → A which vanishes
on Y and can reach any combination of values in X \ Y if multiplied by some other
function on X. This is actually equivalent to asking f to be such that for some function
g : X → A one has f · g = 1 on X \ Y (since multiplying f · g with all the function one
then gets every possible combination of values on X \ Y ), in particular, the function

f(x) =

{
1 if x ∈ X \ Y
0 if x ∈ Y

does the job (with g = 1). Then IY = (f), so that IY is principal.

3. We say that a ring A is simple if A 6= 0 and the only ideals of A are 0 and A. Prove:
Mn(R) is a simple ring for every n ∈ Z>0.

Solution:

Of course Mn(R) 6= 0. Now suppose that I is an ideal of Mn(R) and that I 6= 0.
We want to prove that I = Mn(R). This is equivalent to proving that I contains the
identity matrix. Since I 6= 0, there exists a matrix C ∈ I which is not zero in every
entry, and (C) ⊆ I. The idea is to build the identity matrix starting from C using
operations under which ideals are stable, that is, internal sum and multiplication with
elements of Mn(R) (on both sides).

It is very useful to be able to move elements of a matrix using multiplication, so that
we can move a non-zero entry of C. In order to do this, for each pair of indexes
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1 ≤ λ, µ ≤ n consider the matrix Sλ,µ which has value 1 in the entry of position (λ, µ)
(row, column), and zero everywhere else. To describe it easily, we use Kronecher’s
delta function on pairs of indexes between 1 and n, defined as

δβα =

{
1 if α = β
0 else.

Then the matrix Sλ,µ can be written as Sλ,µ = (δλi δ
µ
j )i,j , where the row and column

indexes range in 1 ≤ i, j ≤ n. Then we can multiply Sλ,µ with a matrix B = (bij)i,j
obtaining the following:

Sλ,µ ·B =

(
n∑
k=1

δλi δ
µ
k bkj

)
i,j

=
(
δλi bµj

)
i,j

B · Sλ,µ =

(
n∑
k=1

bikδ
λ
kδ

µ
j

)
i,j

=
(
biλδ

µ
j

)
i,j
.

Putting the two formulas together (paying attention to the indexes) we get

Sλ1,µ1 ·B · Sλ2,µ2 =
(
δλ1i bµ1λ2δ

µ2
j

)
i,j

and this is the matrix which in the position (λ1, µ2) has entry bµ1λ2 and has entry zero
everywhere else. Now let C = (ci,j)i,j ∈ I be a non-zero matrix, and let (u, v) indexes
such that cu,v ∈ R×. Then applying the formula above, one has

I 3
n∑
k=1

Sk,u ·B · Sv,k = cu,v · 1m

Multiplying this matrix by the scalar matrix with c−1u,v in the diagonal and 0 elsewhere
we get that 1m ∈ I, so that I = R.

4. Let A 6= 0 be a ring. We say that e ∈ A is idempotent if e2 = e. We say that an
idempotent element e ∈ A is non-trivial if e 6∈ {0, 1}.

1. Prove: if e ∈ A is idempotent, then 1− e is also idempotent.

2. Suppose that e 6= 1 is idempotent in A. Prove: e is not a unit of A.

3. Prove that if e ∈ A is idempotent, then B = eAe = {eae : a ∈ A}, endowed with
sum and multiplications from A, is a ring with 0B = 0A and 1B = e.

4. Find a non-trivial idempotent element of A = Z/10Z.

Solution:

1. Using distributivity and the fact that e = e2, we have (1− e)2 = 1− e− e+ e2 =
1− e− e+ e = 1− e, so that 1− e is idempotent.
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2. We have that e(1 − e) = e − e2 = e − e = 0. If e has an inverse of d, then
0 = d · 0 = de(1− e) = 1 · (1− e) = 1− e, so that e = 1, contradiction.

3. For every a1, a2 ∈ A we have ea1e + ea2e = e(a1 + a2)e ∈ eAe and ea1e · ea2e =
e(a1ea2)e, so that B is closed under sum and multiplication in A. Since B ⊆ A,
associativity of sum and product and distributivity are inherited from A. Also,
0A = e·0A ·e ∈ B, so that it is the neutral element 0B of the addition in B. Clearly
−eae = e(−a)e ∈ eAe, so that B is a subgroup with respect to addition. Then one
easily sees that e = e · 1A · e ∈ eAe is neutral with respect to the multiplication,
so that B is a ring with identity 1B = e.

4. We have that [5]2 = [25] = [5], so that [5] is a non-trivial idempotent element.

5. (*) Consider the set

X = {(f, ε)|ε ∈ R>0, f :]− ε, ε[→ C continuous map}.

Define a relation ∼ on X via

(f1, ε1) ∼ (f2, ε2) ⇐⇒ ( ∃ε ∈ R>0, ε ≤ min(ε1, ε2) : f1|]−ε,ε[ = f2|]−ε,ε[ ).

1. Show that ∼ is an equivalence relation. We write [(f, ε)] for the class of (f, ε),
and A = X/ ∼.

2. Show that the following are well defined maps A×A→ A, i.e. binary operations
on A:

[(f1, ε1)] + [(f2, ε2)] = [(f1|]−ε,ε[ + f2|]−ε,ε[, ε)],
[(f1, ε1)] · [(f2, ε2)] = [(f1|]−ε,ε[ · f2|]−ε,ε[, ε)],
where ε = min(ε1, ε2),

and that they define a ring structure on A with 0A = [(0, 1)] and 1A = [(1, 1)].

3. Show that (f, ε) 7→ f(0) defines a ring homomorphism A → C. Deduce that
I = {[(f, ε)]|f(0) = 0} is an ideal of A, and that A/I ∼= C.

4. Prove: A× = A \ I.

The ring A we defined is called the ring of “germs of continuous functions at 0”.

Solution (sketch):

Notation: we denote J(ε) =]− ε, ε[⊆ R, for every ε ∈ R>0.

1. • Reflexivity is clear since if we take two equal functions defined on a same inter-
val J(ε), then we can “restrict” them to J(ε), obtaining two equal functions.

• Symmetry is also clear because the equality f1|]−ε,ε[ = f2|]−ε,ε[ in the definition
of ∼ is symmetric in f1 and f2.
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• Transitivity: Suppose we have (f1, ε1) ∼ (f2, ε2) and (f1, ε2) ∼ (f2, ε3). By
taking the minimal of the two ε that we need to consider in the definition,
we have f1|J(ε) = f2|J(ε) and f2|J(ε) = f3|J(ε) are two equalities in the set
of continuous functions J(ε) → C, so that f1|J(ε) = f3|J(ε), giving (f1, ε1) ∼
(f3, ε3).

Hence ∼ is a equivalence relation.

2. First, notice that summing and multiplying continuous function we have always
a continuous function, so that what we need to prove in order to say that the
operations are well-defined is that the definition given do not depend on the choice
of representatives in X. Suppose (fi, εi) ∼ (f ′i , ε

′
i), for i = 1, 2, and let ε =

min(ε1, ε2) and ε′ = min(ε′1, ε
′
2), and δ = min(ε, ε′). We want to prove that

(f1|J(ε) + f2|J(ε), ε) ∼ (f1|J(ε) + f2|J(ε), ε), and the same for the multiplication.
This is easily done by restricting both sides to J(δ), and using compatibility of
restriction with ring operations. Then it is immediate to check that [(0, 1)] and
[(1, 1)] are respectively zero and unity of A just using the given definitions of
sum and multiplication. Associativity of the two operations and distributivity are
induced by the corresponding properties on the rings of continuous functions from
J(ε) to C for every ε > 0 (which is a subring of C(J(ε),C), using the notation of
Exercise 2).

3. Since 0 is contained in all symmetric interval J(δ) to which one may restricts
functions, the value in 0 of two equivalent germs is the same, so that f(0) ∈ C is
well-defined for every [(f, ε)] ∈ A. It is then immediate to check that the resulting
map A→ C respects group operations and maps 1A → 1C. This map is surjective,
since any complex value λ ∈ C is obtained evaluating at zero the constant germ
[(λ, 1)]. It is immediate to check that I is the kernel of this ring map, so that it is
an ideal of A, and A/I ∼= C by the First Isomorphism Theorem for rings.

4. If [(f, ε)] is a unit, then it is easy to see that f(0) 6= 0. Conversely, assume that
[(f, ε)] is a germ with f(0) 6= 0. Then continuity gives an open neighborhood
J(δ) ⊆ R of 0 where the function has value lying in the open subset C \ {0C},
and then the germ [(1/f, δ)] is the inverse of [(f, ε)]. In conclusion, A× = A \ I.


