Solutions of exercise sheet 6

The content of the marked exercises (*) should be known for the exam.

1. Consider the set

$$
\mathbb{H}=\left\{\left(\begin{array}{rr}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right): \alpha, \beta \in \mathbb{C}\right\} \subset M_{2}(\mathbb{C}) .
$$

Prove:

1. \mathbb{H} is a subring of $M_{2}(\mathbb{C})$, the ring of matrices with entrywise sum and row-timescolumn multiplication;
2. \mathbb{H} is a division ring (it is called the ring of Hamilton quaternions);
3. \mathbb{H} is non-commutative;
4. \mathbb{H} is a \mathbb{R}-vector space of dimension 4 , and there exists an \mathbb{R}-basis $(\mathbb{1}, \dot{i}, \mathfrak{j}, \mathbb{k})$ for \mathbb{H} such that $\dot{\mathrm{i}}^{2}=\dot{\mathrm{j}}^{2}=\mathbb{k}^{2}=-\mathbb{1}, \dot{\mathrm{i}} \mathrm{j}=\mathbb{k}=-\mathrm{j} \dot{\mathrm{i}}, \mathrm{j} \mathbb{k}=\dot{\mathrm{i}}=-\mathbb{k} \dot{j}$ and $\mathbb{k} \dot{\mathrm{i}}=\dot{\mathrm{j}}=-\mathrm{i} \mathbb{k}$.

Solution:

1. To prove that \mathbb{H} is a subring of $M_{2}(\mathbb{C})$, we have to check that it is a subgroup with respect to addiction and a submonoid with respect to multiplication (that is, it contains 1 and is stable under multiplication), since the distributive property is inherited from the superset $M_{2}(\mathbb{C})$.
First, notice that chosing $\alpha=\beta=0$ one obtains the zero matrix, which is the neutral element of the entrywise addition, and chosing $\alpha=1$ and $\beta=0$ one obtains the identity matrix, which is the neutral element of the row-times-column multiplication. Hence $0_{M_{2}(\mathbb{C})}, 1_{M_{2}(\mathbb{C})} \in \mathbb{H}$.
Now, for all $\alpha_{i}, \beta_{i} \in \mathbb{C}, i=1,2$, we have (using the facts that complex conjugation respects sum and multiplication and that $\overline{\bar{z}}=z$ for every $z \in \mathbb{C}$):

$$
\begin{gathered}
\left(\begin{array}{rr}
\alpha_{1} & -\bar{\beta}_{1} \\
\beta_{1} & \overline{\alpha_{1}}
\end{array}\right)-\left(\begin{array}{rr}
\alpha_{2} & -\bar{\beta}_{2} \\
\beta_{2} & \overline{\alpha_{2}}
\end{array}\right)=\left(\begin{array}{rr}
\alpha_{1}-\alpha_{2} & -\overline{\left(\overline{\left.\beta_{1}-\beta_{2}\right)}\right.} \\
\beta_{1}-\beta_{2} & \overline{\left(\alpha_{1}-\alpha_{2}\right)}
\end{array}\right) \in M_{2}(\mathbb{C}), \text { and } \\
\left(\begin{array}{rr}
\alpha_{1} & -\bar{\beta}_{1} \\
\beta_{1} & \overline{\alpha_{1}}
\end{array}\right) \cdot\left(\begin{array}{rr}
\alpha_{2} & -\overline{\beta_{2}} \\
\beta_{2} & \overline{\alpha_{2}}
\end{array}\right)=\left(\begin{array}{ll}
\alpha_{1} \alpha_{2}-\bar{\beta}_{1} \beta_{2} & -\overline{\left(\overline{\left.\alpha_{1} \beta_{2}+\beta_{1} \alpha_{2}\right)}\right.} \\
\overline{\alpha_{1} \beta_{2}}+\beta_{1} \alpha_{2} & \overline{\alpha_{1} \alpha_{2}-\bar{\beta}_{1} \beta_{2}}
\end{array}\right) \in M_{2}(\mathbb{C}) .
\end{gathered}
$$

This proves that \mathbb{H} is a subring of $M_{2}(\mathbb{C})$, as desired.
2. Let $\mathrm{a} \in \mathbb{H}$. We know from linear algebra that a has an inverse in $M_{2}(\mathbb{C})$ if and only if $\operatorname{det}(\mathrm{a}) \neq 0$. Supposing that $\mathrm{a}=\left(\begin{array}{rr}\alpha & -\bar{\beta} \\ \beta & \bar{\alpha}\end{array}\right)$, we have that $\operatorname{det}(\mathrm{a})=$ $\alpha \bar{\alpha}+\beta \bar{\beta}=|\alpha|^{2}+|\beta|^{2} \in \mathbb{R}_{\geq 0}$, which is zero only when $\alpha=\beta=0$, as the absolute value of any non-zero complex numbers is always positive. Hence if $a \in \mathbb{H} \backslash\{0\}$, then a has an inverse matrix in $M_{2}(\mathbb{C})$,

$$
\mathrm{a}^{-1}=\left(\begin{array}{rr}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right)^{-1}=\frac{1}{|a|^{2}+|b|^{2}}\left(\begin{array}{rr}
\bar{\alpha} & \bar{\beta} \\
-\beta & \alpha
\end{array}\right)=\left(\begin{array}{rr}
\alpha_{0} & -\bar{\beta}_{0} \\
\beta_{0} & \overline{\alpha_{0}}
\end{array}\right) \in \mathbb{H},
$$

where one puts $\alpha_{0}=\bar{\alpha}\left(|a|^{2}+|b|^{2}\right)^{-1}$ and $\beta_{0}=-\beta\left(|a|^{2}+|b|^{2}\right)^{-1}$. In conclusion, every non-zero matrix in \mathbb{H} has an inverse in \mathbb{H}, so that \mathbb{H} is a division ring.
3. From the multiplication formula above it is already clear that interchanging the indexes 1 and 2 we can get a different result. For example, take two matrices a_{1} and a_{2} corresponding to chosing $\alpha_{1}=\beta_{1}=\alpha_{2}=i$, and $\beta_{2}=1$. Then the upper-left entry of $\mathrm{a}_{1} \cdot \mathrm{a}_{2}$ is $\alpha_{1} \alpha_{2}-\bar{\beta}_{1} \beta_{2}=-1+i$, while the upper-left entry of $\mathrm{a}_{2} \cdot \mathrm{a}_{1}$ is $\alpha_{1} \alpha_{2}-\beta_{1} \bar{\beta}_{2}=-1-i$, so that $\mathrm{a}_{1} \cdot \mathrm{a}_{2} \neq \mathrm{a}_{2} \cdot \mathrm{a}_{1}$. Hence \mathbb{H} is not a commutative ring.
4. \mathbb{H} is an \mathbb{R} vector space of dimension 4 because every element $a \in \mathbb{H}$ is determined by two complex numbers, and a complex numbers are determined by two real numbers. This can be formalized by considering the map

$$
\begin{aligned}
\phi: \mathbb{R}^{4} & \rightarrow \mathbb{H} \\
(a, b, c, d) & \mapsto\left(\begin{array}{rr}
a+i b & c+i d \\
-c+i d & a-i b
\end{array}\right)
\end{aligned}
$$

It is immediately checked that this map respects sum and multiplication by scalars in \mathbb{R}, so that it is an \mathbb{R}-linear map. Moreover, it is clear that the only quadruple mapped to the zero matrix is $(0,0,0,0)$, so that the kernel is trivial and ϕ is injective. Surjectivity is also evident, so that ϕ is an isomorphism of \mathbb{R}-vector space and $\operatorname{dim}_{\mathbb{R}}(\mathbb{H})=4$.
Mapping the canonical basis $\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}\right)$ of \mathbb{R}^{4} (where \mathbf{e}_{i} is the quadruple with 1 in the i-th position and 0 elsewhere) via ϕ, on gets a basis for \mathbb{H}. This basis is

$$
\mathcal{B}=\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right),\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)\right) .
$$

Then one has

$$
\begin{aligned}
& \left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right)^{2}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)^{2}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)^{2}=-\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \\
& \left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right) \cdot\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right), \\
& \left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right)=\left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right), \text { and } \\
& \left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right)=\left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right) .
\end{aligned}
$$

This means that rewriting the basis above as $\mathcal{B}=(\mathbb{1}, \dot{\mathbb{i}}, \dot{\mathfrak{j}}, \mathbb{k})$, one has the properties $\dot{\mathbb{i}}^{2}=\dot{\mathfrak{j}}^{2}=\mathbb{k}^{2}=-\mathbb{1}, \dot{\mathrm{i}} \dot{\mathfrak{j}}=\mathbb{k}, \dot{\mathfrak{j}} \mathbb{k}=\dot{\mathbb{1}}$ and $\mathbb{k} \dot{\mathbb{i}}=\dot{\mathfrak{j}}$. Then the multiplication in the reversed order automatically satisfy the required condition. Indeed all the three matrices $\dot{\mathbb{1}}, \dot{\mathfrak{j}}, \mathbb{k}$ satisfy the equality $\mathbb{x}^{2}=-\mathbb{1}$ in \mathbb{H}, which is equivalent (assuming invertibility of x) to $\mathbb{x}^{-1}=-\mathbb{x}$. Then the equality $\dot{\mathfrak{i}} \mathfrak{j}=\mathbb{k}$ gives $\dot{j}^{-1} \dot{\mathbb{i}}^{-1}=\mathbb{k}^{-1}$, i.e. $\dot{j} i \mathrm{i}=-\mathbb{k}$, and similarly can be done for the other equalities.
2. Let X be a set, A a commutative ring and $C(X, A)=\{f: X \rightarrow A\}$ be the ring of functions $X \rightarrow A$, with pointwise sum and multiplication. Given a subset $Y \subseteq X$, define

$$
I_{Y}=\left\{f \in C(X, A):\left.f\right|_{Y}=0\right\}
$$

Prove that I_{Y} is an ideal, and prove that it is principal by finding a generator.

Solution:

Notice that if $X=\varnothing$, then $C(X, A)$ only contains the empty map, so that it is the zero ring (as it has only one element), and I_{Y} is the zero ideal, which is principal (generated by 0). Hence we will exclude the case in which $X=\varnothing$.

As seen in class, the restriction map $\varrho: C(X, A) \rightarrow C(Y, A)$ sending $f \mapsto f \mid Y$ is a ring homomorphism. Then $\operatorname{ker}(\varrho)=I_{Y}$ by definition, so that I_{Y} is an ideal in $C(X, A)$.

A generator of I_{Y} as a principal ideal needs to be a map $f: X \rightarrow A$ which vanishes on Y and can reach any combination of values in $X \backslash Y$ if multiplied by some other function on X. This is actually equivalent to asking f to be such that for some function $g: X \rightarrow A$ one has $f \cdot g=1$ on $X \backslash Y$ (since multiplying $f \cdot g$ with all the function one then gets every possible combination of values on $X \backslash Y$), in particular, the function

$$
f(x)= \begin{cases}1 & \text { if } x \in X \backslash Y \\ 0 & \text { if } x \in Y\end{cases}
$$

does the job (with $g=1$). Then $I_{Y}=(f)$, so that I_{Y} is principal.
3. We say that a ring A is simple if $A \neq 0$ and the only ideals of A are 0 and A. Prove: $M_{n}(\mathbb{R})$ is a simple ring for every $n \in \mathbb{Z}_{>0}$.

Solution:

Of course $M_{n}(\mathbb{R}) \neq 0$. Now suppose that I is an ideal of $M_{n}(\mathbb{R})$ and that $I \neq 0$. We want to prove that $I=M_{n}(\mathbb{R})$. This is equivalent to proving that I contains the identity matrix. Since $I \neq 0$, there exists a matrix $C \in I$ which is not zero in every entry, and $(C) \subseteq I$. The idea is to build the identity matrix starting from C using operations under which ideals are stable, that is, internal sum and multiplication with elements of $M_{n}(\mathbb{R})$ (on both sides).

It is very useful to be able to move elements of a matrix using multiplication, so that we can move a non-zero entry of C. In order to do this, for each pair of indexes
$1 \leq \lambda, \mu \leq n$ consider the matrix $S_{\lambda, \mu}$ which has value 1 in the entry of position (λ, μ) (row, column), and zero everywhere else. To describe it easily, we use Kronecher's delta function on pairs of indexes between 1 and n, defined as

$$
\delta_{\alpha}^{\beta}= \begin{cases}1 & \text { if } \alpha=\beta \\ 0 & \text { else. }\end{cases}
$$

Then the matrix $S_{\lambda, \mu}$ can be written as $S_{\lambda, \mu}=\left(\delta_{i}^{\lambda} \delta_{j}^{\mu}\right)_{i, j}$, where the row and column indexes range in $1 \leq i, j \leq n$. Then we can multiply $S_{\lambda, \mu}$ with a matrix $B=\left(b_{i j}\right)_{i, j}$ obtaining the following:

$$
\begin{aligned}
& S_{\lambda, \mu} \cdot B=\left(\sum_{k=1}^{n} \delta_{i}^{\lambda} \delta_{k}^{\mu} b_{k j}\right)_{i, j}=\left(\delta_{i}^{\lambda} b_{\mu j}\right)_{i, j} \\
& B \cdot S_{\lambda, \mu}=\left(\sum_{k=1}^{n} b_{i k} \delta_{k}^{\lambda} \delta_{j}^{\mu}\right)_{i, j}=\left(b_{i \lambda} \delta_{j}^{\mu}\right)_{i, j} .
\end{aligned}
$$

Putting the two formulas together (paying attention to the indexes) we get

$$
S_{\lambda_{1}, \mu_{1}} \cdot B \cdot S_{\lambda_{2}, \mu_{2}}=\left(\delta_{i}^{\lambda_{1}} b_{\mu_{1} \lambda_{2}} \delta_{j}^{\mu_{2}}\right)_{i, j}
$$

and this is the matrix which in the position $\left(\lambda_{1}, \mu_{2}\right)$ has entry $b_{\mu_{1} \lambda_{2}}$ and has entry zero everywhere else. Now let $C=\left(c_{i, j}\right)_{i, j} \in I$ be a non-zero matrix, and let (u, v) indexes such that $c_{u, v} \in \mathbb{R}^{\times}$. Then applying the formula above, one has

$$
I \ni \sum_{k=1}^{n} S_{k, u} \cdot B \cdot S_{v, k}=c_{u, v} \cdot \mathbb{1}_{m}
$$

Multiplying this matrix by the scalar matrix with $c_{u, v}^{-1}$ in the diagonal and 0 elsewhere we get that $\mathbb{1}_{m} \in I$, so that $I=\mathbb{R}$.
4. Let $A \neq 0$ be a ring. We say that $e \in A$ is idempotent if $e^{2}=e$. We say that an idempotent element $e \in A$ is non-trivial if $e \notin\{0,1\}$.

1. Prove: if $e \in A$ is idempotent, then $1-e$ is also idempotent.
2. Suppose that $e \neq 1$ is idempotent in A. Prove: e is not a unit of A.
3. Prove that if $e \in A$ is idempotent, then $B=e A e=\{e a e: a \in A\}$, endowed with sum and multiplications from A, is a ring with $0_{B}=0_{A}$ and $1_{B}=e$.
4. Find a non-trivial idempotent element of $A=\mathbb{Z} / 10 \mathbb{Z}$.

Solution:

1. Using distributivity and the fact that $e=e^{2}$, we have $(1-e)^{2}=1-e-e+e^{2}=$ $1-e-e+e=1-e$, so that $1-e$ is idempotent.
2. We have that $e(1-e)=e-e^{2}=e-e=0$. If e has an inverse of d, then $0=d \cdot 0=d e(1-e)=1 \cdot(1-e)=1-e$, so that $e=1$, contradiction.
3. For every $a_{1}, a_{2} \in A$ we have $e a_{1} e+e a_{2} e=e\left(a_{1}+a_{2}\right) e \in e A e$ and $e a_{1} e \cdot e a_{2} e=$ $e\left(a_{1} e a_{2}\right) e$, so that B is closed under sum and multiplication in A. Since $B \subseteq A$, associativity of sum and product and distributivity are inherited from A. Also, $0_{A}=e \cdot 0_{A} \cdot e \in B$, so that it is the neutral element 0_{B} of the addition in B. Clearly $-e a e=e(-a) e \in e A e$, so that B is a subgroup with respect to addition. Then one easily sees that $e=e \cdot 1_{A} \cdot e \in e A e$ is neutral with respect to the multiplication, so that B is a ring with identity $1_{B}=e$.
4. We have that $[5]^{2}=[25]=[5]$, so that [5] is a non-trivial idempotent element.
5. (*) Consider the set

$$
X=\left\{(f, \varepsilon) \mid \varepsilon \in \mathbb{R}_{>0}, f:\right]-\varepsilon, \varepsilon[\rightarrow \mathbb{C} \text { continuous map }\}
$$

Define a relation \sim on X via

$$
\left(f_{1}, \varepsilon_{1}\right) \sim\left(f_{2}, \varepsilon_{2}\right) \Longleftrightarrow\left(\exists \varepsilon \in \mathbb{R}_{>0}, \varepsilon \leq \min \left(\varepsilon_{1}, \varepsilon_{2}\right):\left.f_{1}\right|_{]-\varepsilon, \varepsilon[}=\left.f_{2}\right|_{]-\varepsilon, \varepsilon[}\right) .
$$

1. Show that \sim is an equivalence relation. We write $[(f, \varepsilon)]$ for the class of (f, ε), and $A=X / \sim$.
2. Show that the following are well defined maps $A \times A \rightarrow A$, i.e. binary operations on A :

$$
\begin{aligned}
& {\left[\left(f_{1}, \varepsilon_{1}\right)\right]+\left[\left(f_{2}, \varepsilon_{2}\right)\right]=\left[\left(\left.f_{1}\right|_{]-\varepsilon, \varepsilon[}+\left.f_{2}\right|_{]-\varepsilon, \varepsilon}[, \varepsilon)\right],\right.} \\
& {\left[\left(f_{1}, \varepsilon_{1}\right)\right] \cdot\left[\left(f_{2}, \varepsilon_{2}\right)\right]=\left[\left(\left.\left.f_{1}\right|_{]-\varepsilon, \varepsilon[} \cdot f_{2}\right|_{]-\varepsilon, \varepsilon}[, \varepsilon)\right],\right.} \\
& \text { where } \varepsilon=\min \left(\varepsilon_{1}, \varepsilon_{2}\right),
\end{aligned}
$$

and that they define a ring structure on A with $0_{A}=[(0,1)]$ and $1_{A}=[(1,1)]$.
3. Show that $(f, \varepsilon) \mapsto f(0)$ defines a ring homomorphism $A \rightarrow \mathbb{C}$. Deduce that $I=\{[(f, \varepsilon)] \mid f(0)=0\}$ is an ideal of A, and that $A / I \cong \mathbb{C}$.
4. Prove: $A^{\times}=A \backslash I$.

The ring A we defined is called the ring of "germs of continuous functions at 0 ".

Solution (sketch):

Notation: we denote $J(\varepsilon)=]-\varepsilon, \varepsilon\left[\subseteq \mathbb{R}\right.$, for every $\varepsilon \in \mathbb{R}_{>0}$.

1. - Reflexivity is clear since if we take two equal functions defined on a same inter$\operatorname{val} J(\varepsilon)$, then we can "restrict" them to $J(\varepsilon)$, obtaining two equal functions.

- Symmetry is also clear because the equality $\left.f_{1}\right|_{]-\varepsilon, \varepsilon[}=\left.f_{2}\right|_{]-\varepsilon, \varepsilon[}$ in the definition of \sim is symmetric in f_{1} and f_{2}.
- Transitivity: Suppose we have $\left(f_{1}, \varepsilon_{1}\right) \sim\left(f_{2}, \varepsilon_{2}\right)$ and $\left(f_{1}, \varepsilon_{2}\right) \sim\left(f_{2}, \varepsilon_{3}\right)$. By taking the minimal of the two ε that we need to consider in the definition, we have $\left.f_{1}\right|_{J(\varepsilon)}=\left.f_{2}\right|_{J(\varepsilon)}$ and $\left.f_{2}\right|_{J(\varepsilon)}=\left.f_{3}\right|_{J(\varepsilon)}$ are two equalities in the set of continuous functions $J(\varepsilon) \rightarrow \mathbb{C}$, so that $\left.f_{1}\right|_{J(\varepsilon)}=\left.f_{3}\right|_{J(\varepsilon)}$, giving $\left(f_{1}, \varepsilon_{1}\right) \sim$ $\left(f_{3}, \varepsilon_{3}\right)$.
Hence \sim is a equivalence relation.

2. First, notice that summing and multiplying continuous function we have always a continuous function, so that what we need to prove in order to say that the operations are well-defined is that the definition given do not depend on the choice of representatives in X. Suppose $\left(f_{i}, \varepsilon_{i}\right) \sim\left(f_{i}^{\prime}, \varepsilon_{i}^{\prime}\right)$, for $i=1,2$, and let $\varepsilon=$ $\min \left(\varepsilon_{1}, \varepsilon_{2}\right)$ and $\varepsilon^{\prime}=\min \left(\varepsilon_{1}^{\prime}, \varepsilon_{2}^{\prime}\right)$, and $\delta=\min \left(\varepsilon, \varepsilon^{\prime}\right)$. We want to prove that $\left(\left.f_{1}\right|_{J(\varepsilon)}+\left.f_{2}\right|_{J(\varepsilon)}, \varepsilon\right) \sim\left(\left.f_{1}\right|_{J(\varepsilon)}+\left.f_{2}\right|_{J(\varepsilon)}, \varepsilon\right)$, and the same for the multiplication. This is easily done by restricting both sides to $J(\delta)$, and using compatibility of restriction with ring operations. Then it is immediate to check that $[(0,1)]$ and $[(1,1)]$ are respectively zero and unity of A just using the given definitions of sum and multiplication. Associativity of the two operations and distributivity are induced by the corresponding properties on the rings of continuous functions from $J(\varepsilon)$ to \mathbb{C} for every $\varepsilon>0$ (which is a subring of $C(J(\varepsilon), \mathbb{C}$), using the notation of Exercise 2).
3. Since 0 is contained in all symmetric interval $J(\delta)$ to which one may restricts functions, the value in 0 of two equivalent germs is the same, so that $f(0) \in \mathbb{C}$ is well-defined for every $[(f, \varepsilon)] \in A$. It is then immediate to check that the resulting map $A \rightarrow \mathbb{C}$ respects group operations and maps $1_{A} \rightarrow 1_{\mathbb{C}}$. This map is surjective, since any complex value $\lambda \in \mathbb{C}$ is obtained evaluating at zero the constant germ $[(\lambda, 1)]$. It is immediate to check that I is the kernel of this ring map, so that it is an ideal of A, and $A / I \cong \mathbb{C}$ by the First Isomorphism Theorem for rings.
4. If $[(f, \varepsilon)]$ is a unit, then it is easy to see that $f(0) \neq 0$. Conversely, assume that $[(f, \varepsilon)]$ is a germ with $f(0) \neq 0$. Then continuity gives an open neighborhood $J(\delta) \subseteq \mathbb{R}$ of 0 where the function has value lying in the open subset $\mathbb{C} \backslash\left\{0_{\mathbb{C}}\right\}$, and then the germ $[(1 / f, \delta)]$ is the inverse of $[(f, \varepsilon)]$. In conclusion, $A^{\times}=A \backslash I$.
