D-MATH Prof. Emmanuel Kowalski Algebra I

Exercise sheet 7

The content of the marked exercises (*) should be known for the exam.

1. (*) Let R be a ring. Similarly as for groups, given two R-linear maps $\alpha : L \to M$ and $\beta : M \to N$ we say that

$$L \xrightarrow{\alpha} M \xrightarrow{\beta} N$$

is an exact sequence of *R*-modules if $Im(\alpha) = ker(\beta)$, and given

$$(**) \qquad \cdots \longrightarrow M_{n-2} \xrightarrow{\alpha_{n-2}} M_{n-1} \xrightarrow{\alpha_{n-1}} M_n \xrightarrow{\alpha_n} M_{n+1} \xrightarrow{\alpha_{n+1}} M_{n+2} \longrightarrow \cdots$$

we say that (**) is an exact sequence if $M_{i-1} \xrightarrow{\alpha_{i-1}} M_i \xrightarrow{\alpha_i} M_{i+1}$ is an exact sequence for every *i*. We call a short exact sequence of *R*-modules any exact sequence of *R*-modules of the form

$$0 \to L \xrightarrow{\alpha} M \xrightarrow{\beta} N \to 0.$$

- 1. Show that in the exact sequence above N is determined, up to isomorphism, by the map α .
- 2. Find a short exact sequence as above, with $R = \mathbb{Z}$, $L = \mathbb{Z}$, $M = \mathbb{Z} \oplus \bigoplus_{i=1}^{\infty} \mathbb{Z}/2\mathbb{Z}$, and $\alpha(n) = 2n + 0$.
- 3. Find a short exact sequence as above, with $R = \mathbb{R}$, $L = M \oplus M$ and $M \neq 0$.
- **2.** Let R be a ring and M be an R-module. Let $N \leq M$ and $L \leq M$, meaning that N and L are R-submodules of M.

Show that $N \cap L \leq N$, and that $L \leq N + L \leq M$, and prove that there is an isomorphism $N/(N \cap L) \xrightarrow{\sim} (N + L)/L$.

- **3.** Let $R \neq 0$ be a commutative ring. We say that $a \in R$ is a zero-divisor if there exists $b \in R$ such that $b \neq 0$ and ab = 0. We say that $a \in R$ is regular if a is not a zero-divisor.
 - 1. Prove that invertible elements in R are regular. Is the converse true?
 - 2. Let $R_{\text{reg}} = \{a \in R : a \text{ is regular}\}$. Prove that R_{reg} contains 1_R and that it is stable under multiplication. This is also phrased by saying that the R_{reg} is a multiplicative subset of R.
 - 3. Let now M be an R-module. Define $M_{tor} = \{m \in M | \exists r \in R_{reg} : r \cdot m = 0_M\}$. Prove that M_{tor} is a submodule of M. It is called the *torsion submodule* of M.

- 4. We say that a module N is torsion-free if $N_{\text{tor}} = 0$. Prove: for every R-module M, the module M/M_{tor} is torsion-free.
- 5. Find the torsion submodule of the \mathbb{Z} -module $M = \mathbb{R}/\mathbb{Z}$. What is M/M_{tor} ?
- 4. (*) Let R be a commutative ring. If M and N are R-modules, we define $\operatorname{Hom}_R(M, N)$ as the set of R-linear maps $M \to N$. It is easily seen to be an R-module by defining

 $(f+g)(m) = f(m) + g(m), \ (a \cdot f)(m) := a \cdot (f(m)), \ \forall f, g \in \operatorname{Hom}_R(M, N), \ a \in R, \ m \in M.$

1. Let N be an R-module. For every R-linear map $f: M_1 \to M_2$, define

$$f^*: \operatorname{Hom}_R(M_2, N) \to \operatorname{Hom}_R(M_1, N)$$
$$g \mapsto g \circ f.$$

Prove that f^* is also an *R*-linear map, and that we have the following properties:

- $(f_1 \circ f_2)^* = f_2^* \circ f_1^*$, for every couple of *R*-linear maps $f_1 : M_1 \to M_2$ and $f_2 : M_2 \to M_3$;
- $\operatorname{id}_{M}^{*} = \operatorname{id}_{\operatorname{Hom}_{R}(M,N)}$ for every *R*-module *M*.
- 2. Define a natural map $\operatorname{Hom}_R(M_1 \oplus M_2, N) \to \operatorname{Hom}_R(M_1, N) \oplus \operatorname{Hom}_R(M_2, N)$ and prove that it is an isomorphism of *R*-modules.
- 3. Prove that for any exact sequence of *R*-modules $A \to B \to C \to 0$, one has that the corresponding

$$0 \to \operatorname{Hom}_R(C, N) \to \operatorname{Hom}_R(B, N) \to \operatorname{Hom}_R(A, N)$$

is also an exact sequence of modules.

4. Let $A = \operatorname{End}_{\mathbb{R}}(M)$, where M is a countably infinite dimensional \mathbb{R} -vector space (i.e., M has an \mathbb{R} -basis $\mathcal{B} = (e_i)_{i \in \mathbb{Z}_{>0}}$). Prove that A^2 is isomorphic to A as an \mathbb{R} -vector space.[*Hint:* First, prove that $M \cong M \oplus M$ as \mathbb{R} vector space.] What happens if M is finite dimensional? (What if M is uncountably infinite dimensional?)

Due to: 6 November 2014, 3 pm.