Exercise sheet 8

The content of the marked exercises (*) should be known for the exam.

1. (*) [Formal construction of the polynomial ring] Let A be a commutative ring and consider the set

$$
V=\left\{\left(a_{i}\right) \mid i \in \mathbb{Z}_{\geq 0}, a_{i} \in A, a_{i}=0 \text { for } i \text { large enough }\right\} .
$$

Endowing V with componentwise sum and with the scalar multiplication $a \cdot\left(a_{i}\right)=$ ($a \cdot a_{i}$), we have that V is an A-module. Define a multiplication

$$
\begin{aligned}
V \times V & \rightarrow V \\
\left(\left(a_{i}\right),\left(b_{i}\right)\right) & \mapsto\left(a_{i}\right) \cdot\left(b_{i}\right)=\left(c_{i}\right), c_{i}=\sum_{\substack{j, k \geq 0 \\
j+k=i}} a_{j} b_{k}
\end{aligned}
$$

1. Show that this product is well defined.
2. Show that $\left(1_{A}, 0_{A}, 0_{A}, \ldots\right)$ is a neutral element for this product, and that the product is associative, commutative and distributive with respect to addition. This allows us to conclude that V is a ring.
3. Let $Y:=\left(\alpha_{i}\right)$, with $\alpha_{1}=1_{A}$ and $\alpha_{i}=0_{A}$ for $i \neq 1$. For $j \geq 0$, find the sequence of elements β_{i} for which $Y^{j}=\left(\beta_{i}\right)$. Deduce that $\left(Y^{j}\right)_{j \geq 0}$ is a basis of V as an A-module.
4. Let B be a commutative ring, $f_{0}: A \rightarrow B$ a ring homomorphism and $b \in B$. Prove that there exists a unique ring homomorphism $f: V \rightarrow B$ sending $f(Y)=b$ and $f\left(a \cdot 1_{V}\right)=f_{0}(a)$ for each $a \in A$.
5. Let M be an A-module and $T: M \rightarrow M$ an A-linear map. Show that there exists a unique V-module structure \cdot_{V} on M such that $Y \cdot{ }_{V} m=T(m)$ and $\left(a \cdot 1_{V}\right) \cdot{ }_{V} m=a \cdot{ }_{A} m$. Moreover, show that if M is finitely generated as an A-module, then so it is as a V-module. Is the converse true?
6. Prove that V and $A[X]$ are isomorphic rings.
7. Let A be a commutative ring
8. Show that there exists a unique A-linear map

$$
D: A[X] \rightarrow A[X]
$$

such that

$$
\begin{aligned}
D\left(X^{i}\right) & =i X^{i-1}, \quad i \geq 1 \\
D(1) & =0 .
\end{aligned}
$$

Is D a ring homomorphism?
2. Prove that for all $P, Q \in A[X]$ one has

$$
D(P Q)=P D(Q)+Q D(P)
$$

3. (Factorization Theorem) Now let $A=K$ be a field, and $P \in K[X]$. Prove that for every $\alpha \in K$ one has $P(\alpha)=0$ if and only if P is divisible by $X-\alpha$, that is, there is a polynomial $Q \in K[X]$ such that $P(X)=(X-\alpha) Q(X)$ [Hint: One implication is immediate. For the other, divide P by $X-\alpha$.]
4. We say that $\alpha \in K$ is a multiple root of $P \in K[X]$ if P is divisible by $(X-\alpha)^{2}$. Prove: α is a multiple root of P if and only if $P(\alpha)=D(P)(\alpha)=0$.
5. Let A be an integral domain. Show that $A[X]^{\times}=A^{\times}$.
6. Let K be a field, and consider the ideal I generated by X and Y in $K[X, Y]$. Show:
7. I is not principal;
8. I is maximal.

Due to: 13 November 2014, 3 pm .

