Algebra I

D-MATH Prof. Emmanuel Kowalski

Solutions of exercise sheet 8

The content of the marked exercises (*) should be known for the exam.

1. (*) [Formal construction of the polynomial ring] Let A be a commutative ring and consider the set

$$V = \{(a_i) \mid i \in \mathbb{Z}_{>0}, a_i \in A, a_i = 0 \text{ for } i \text{ large enough}\}.$$

Endowing V with componentwise sum and with the scalar multiplication $a \cdot (a_i) = (a \cdot a_i)$, we have that V is an A-module. Define a multiplication

$$V \times V \to V$$

((a_i), (b_i)) \mapsto (a_i) \cdot (b_i) = (c_i), c_i = $\sum_{\substack{j,k \ge 0\\ i+k=i}} a_j b_k$

- 1. Show that this product is well defined.
- 2. Show that $(1_A, 0_A, 0_A, ...)$ is a neutral element for this product, and that the product is associative, commutative and distributive with respect to addition. This allows us to conclude that V is a ring.
- 3. Let $Y := (\alpha_i)$, with $\alpha_1 = 1_A$ and $\alpha_i = 0_A$ for $i \neq 1$. For $j \geq 0$, find the sequence of elements β_i for which $Y^j = (\beta_i)$. Deduce that $(Y^j)_{j\geq 0}$ is a basis of V as an A-module.
- 4. Let B be a commutative ring, $f_0: A \to B$ a ring homomorphism and $b \in B$. Prove that there exists a unique ring homomorphism $f: V \to B$ sending f(Y) = b and $f(a \cdot 1_V) = f_0(a)$ for each $a \in A$.
- 5. Let M be an A-module and $T: M \to M$ an A-linear map. Show that there exists a unique V-module structure \cdot_V on M such that $Y \cdot_V m = T(m)$ and $(a \cdot 1_V) \cdot_V m = a \cdot_A m$. Moreover, show that if M is finitely generated as an A-module, then so it is as a V-module. Is the converse true?
- 6. Prove that V and A[X] are isomorphic rings.

Solution:

1. We have that $(a_i) \cdot (b_i)$ defined as above is a uniquely determined sequence (c_i) of elements in A_i , for every $(a_i), (b_i) \in$. The product is well-defined if this sequence belongs to V, that is, if $c_i = 0$ for $i \gg 0$. By hypothesis, there exists positive

numbers $n, m \ge 0$ such that $a_i = 0$ for $i \ge n$ and $b_i = 0$ for $i \ge m$. Then one has for every $N \ge n + m$ that

$$c_N = \sum_{i=0}^N a_i b_{n+m-i} = \sum_{i=0}^m a_i b_{n+m-i} + \sum_{i=m+1}^N a_i b_{n+m-i} = 0 + 0 = 0,$$

since for $i \in \{0, \ldots, m\}$ we have $n + m - i \ge m$, so that $b_{n+m-i} = 0$, and for $i \in \{m+1, \ldots, m+n0\}$ we have $a_i = 0$.

2. First, notice that the product is commutative, as we can interchange the indexes j and k in the sum appearing in the definition. Then we just need to check that $(e_i) = (1, 0, 0, ...)$ is neutral on one side, and we have

$$(1,0,0,\dots) \cdot (a_i) = \left(\sum_{\substack{j,k \ge 0 \\ j+k=i}} e_j a_k\right) = (a_i),$$

since for $j \neq 0$ we have $e_j = 0$. Hence $1_V := (1, 0, 0, ...)$ is a neutral element for the multiplication.

As concerns associativity, for every $(a_i), (b_i), (c_i) \in V$ applying the definition we have

$$((a_i) \cdot (b_i)) \cdot (c_i) = \left(\sum_{j=0}^i a_j b_{i-j}\right) \cdot (c_i) = \left(\sum_{k=0}^i \left(\sum_{j=0}^k a_j b_{k-j}\right) c_{i-k}\right) = \left(\sum_{k=0}^i \sum_{j=0}^k a_j b_{k-j} c_{i-k}\right) = \left(\sum_{\substack{\alpha,\beta,\gamma \ge 0\\\alpha+\beta+\gamma=i}} a_\alpha b_\beta c_\gamma\right)$$

and

$$(a_i) \cdot ((b_i) \cdot (c_i)) = (a_i) \cdot \left(\sum_{k=0}^i b_k c_{i-k}\right) = \left(\sum_{j=0}^i a_j \left(\sum_{k=0}^{i-j} b_k c_{(i-j)-k}\right)\right) = \left(\sum_{\substack{j=0\\ \alpha+\beta+\gamma=i}}^i a_{\alpha} b_{\beta} c_{\gamma}\right)$$

so that the product is associative. Finally, we check distributivity with respect to addition (only one side, being the product commutative): for every $(a_i), (b_i), (c_i) \in V$ we have

$$((a_i) + (b_i)) \cdot (c_i) = (a_i + b_i) \cdot (c_i) = \left(\sum_{j=0}^i (a_j + b_j)c_i\right) = \left(\sum_{j=0}^i (a_j c_{i-j} + b_j c_{i-j})\right) = \left(\sum_{j=0}^i (a_j c_{i-j})\right) + \left(\sum_{j=0}^i (b_j c_{i-j})\right) = (a_i) \cdot (c_i) + (b_i) \cdot (c_i).$$

So V is a ring with componentwise sum, multiplication defined as above, $0_V = (0, ...)$ and $1_V = (1, 0, ...)$.

3. For $i, j \in \mathbb{Z}_{\geq 0}$ we denote with $\delta_{i,j} \in A$ the Kronecher's delta of i and j, which is 1 if i = j, and 0 otherwise. Then $Y = (\delta_{i1})_i$. We claim that $Y^j = (\delta_{i,j})_i$ for all $j \geq 0$. This is easily proven by induction. For j = 0, 1 this is clear. Now suppose that $Y^k = (\delta_{i,k})_i$ (inductive hypothesis) and let us prove that $Y^{k+1} = (\delta_{i,(k+1)})_i$. Write $Y^{k+1} = (\vartheta_i)$. Then $\vartheta_{k+1} = \sum_{\substack{j,l \geq 0 \\ j+l=k+1}} \delta_{j,k} \delta_{l,1} = 1$, because we can make both δ 's non-zero only when we choose j = k and l = 1, in which case we obtain 1 as summand. On the other hand, for $h \neq k+1$ we see that $\vartheta_h = \sum_{\substack{j,l \geq 0 \\ j+l=h}} \delta_{j,k} \delta_{l,1} = 0$, because the couple of indexes (j,l) = (k,1), which is the only one making both δ 's non-zero, is not considered in the sum. In conclusion, $Y^k = (\delta_{i,k})_i$, that is, Y^k is the sequence with 1 in the k-th position and 0 everywhere else.

Then for every $a = (a_i) \in V$ we have that $a = \sum_{i:a_i \neq 0} a_i Y^i$, which is a finite sum by definition of V, so that $(Y^i)_{i \in \mathbb{Z}_{\geq 0}}$ spans all V over A. Moreover a finite linear combination $\sum_{j=0}^{m} a_{i_j} \cdot Y^{i_j}$, where the i_j 's are distinct indexes in $\mathbb{Z}_{\geq 0}$ is zero if and only if all the a_{i_j} are zero, so that we can conclude that $(Y^i)_{i \in \mathbb{Z}_{\geq 0}}$ is an R-basis for V. As the set of indexes i such that $a_i \neq 0$ is finite, there exists $d \in \mathbb{Z}$ bigger or equal than all those i's, and we can rewrite $a = \sum_{i \leq d} a_i Y^i$. Notice that since the Y^j are R-linear independent, this decomposition is unique up to choosing a different d, in which case we can just have fewer/more zero summand.

4. We first prove uniqueness and then existence. Also, by abuse of notation, for $r \in A$ we write $r = r \cdot 1_V \in V$. It is the sequence with r in the 0-th position and 0 everywhere else.

Suppose that $f: V \to B$ is a ring homomorphism sending $A \ni a \mapsto f_0(a)$ and $Y \mapsto b$. Then by applying previous point, for $s \in V$ we can write $s = \sum_{i=0}^{d} s_i Y^i$ for some $s_i \in A$ and $d \in \mathbb{Z}_{\geq 0}$, giving

$$f(s) = f\left(\sum_{i=0}^{d} s_i Y^i\right) = \sum_{i=0}^{d} f(s_i) f(Y^i) = \sum_{i=0}^{d} f_0(s_i) f(Y^i) = \sum_{i=0}^{d} f_0(s_i) b^i,$$

which means that f has a prescribed behavior on all V, that is, if f exists it is unique.

To prove existence, we just check that the definition for f on s that we found while proving uniqueness, that is,

$$f\left(\sum_{i=0}^{d} s_i Y^i\right) = \sum_{i=0}^{d} f_0(s_i) b^i$$

gives indeed a ring homomorphism. First, notice that this is a good definition because the decomposition $s = \sum_{i=0}^{d} s_i Y^i$ is unique up to extra zero-summand, and $f_0(0) = 0$ being f_0 a ring homomorphism. Then we have $f(0) = f(0 \cdot Y^0) = f_0(0)b^0 = 0$, and $f(1) = f(1 \cdot Y^0) = f_0(1)b^0 = 1$ being f_0 a ring homomorphism. To conclude, we prove that f respects sums and multiplications. For every $s, t \in V$, we let d be big enough so that we can write $s = \sum_{i=0}^{d} s_i Y^i$ and $t = \sum_{i=0}^{d} t_i Y^i$.

Please turn over!

Now

$$f(s+t) = f\left(\sum_{i=0}^{d} (s_i + t_i)Y^i\right) = \sum_{i=0}^{d} f_0(s_i + t_i)b^i =$$
$$= \sum_{i=0}^{d} (f_0(s_i) + f_0(t_i))b^i = \sum_{i=0}^{d} f_0(s_i)b^i + \sum_{i=0}^{d} f_0(s_i)b^i =$$
$$= f\left(\sum_{i=0}^{d} s_iY^i\right) + f\left(\sum_{i=0}^{d} t_iY^i\right) = f(s) + f(t),$$

and

$$f(s \cdot t) = f\left(\sum_{i=0}^{2d} \left(\sum_{j=0}^{i} s_j t_{i-j}\right) Y^i\right) = f\left(\sum_{i=0}^{2d} f_0\left(\sum_{j=0}^{i} s_j t_{i-j}\right) b^i\right) = \sum_{i=0}^{2d} \left(\sum_{j=0}^{i} f_0(s_j) f_0(t_{i-j})\right) b^i = \sum_{i=0}^{d} f_0(s_i) b^i \cdot \sum_{i=0}^{d} f_0(t_i) b^i = f(s) \cdot f(t),$$

and $f: V \to B$ is a ring homomorphism which maps $Y \mapsto b$ and $A \ni a \mapsto f_0(a)$.

5. Similarly as in previous point, we first prove uniqueness, and then existence. By hypothesis, we have an A-module structure on M, and an A-linear map $T: M \to M$.

Suppose we have that M has also a V-module structure with $Y \cdot m = T(m)$ and with $a \in A$ acting on $m \in M$ as it does with respect to the given A-module structure. Then for every $s = \sum_{i=0}^{d} s_i Y^i \in V$ and $m \in M$ we have

$$s \cdot m = \left(\sum_{i=0}^{d} s_i Y^i\right) \cdot m = \sum_{i=0}^{d} s_i \cdot T^i(m) = \sum_{i=0}^{d} T^i(s_i \cdot m),$$

so that $s \cdot m$ is uniquely determined, and the V-module structure is unique, if it exists.

Disclaimer: Notice that by T^i we denote the multiplication of T with itself in the ring of additive endomorphisms End(M), which is just the *i*-th iteration of the endomorphism T.

Now we prove existence, by checking that the definition we found,

$$\left(\sum_{i=0}^{d} s_i Y^i\right) \cdot m = \sum_{i=0}^{d} T^i(s_i \cdot m),$$

gives indeed a V-module structure on M coinciding with the one of A-module on elements $a \in A$ and satisfies $Y \cdot m = T(m)$. Those properties are clear from the definition, which is well-given as the decomposition $s = \sum_{i=0}^{d} s_i Y^i$ is unique up to adding zero summands, and $0_A \cdot m = 0$ by hypothesis. Clearly, for every $m \in M$ we have $1_V \cdot m = (1 \cdot Y^0) \cdot m = T^0(1 \cdot m) = m$. Now we check that $s \cdot$ is additive for every $s = \sum_{i=0}^d s_i Y^i \in V$: for every $m, n \in M$, we have indeed:

$$s \cdot (m+n) = \left(\sum_{i=0}^{d} s_i Y^i\right) \cdot (m+n) = \sum_{i=0}^{d} T^i (s_i \cdot (m+n)) =$$
$$= \sum_{i=0}^{d} T^i (s_i \cdot (m)) + \sum_{i=0}^{d} T^i (s_i \cdot (n)) = s \cdot m + s \cdot n$$

Now we check compatibility with operations in V. For every $m \in M$ and $s, t \in V$, with $s = \sum_{i=0}^{d} s_i Y^i$ and $t = \sum_{i=0}^{d} t_i Y^i$, we have

$$(s+t) \cdot m = \sum_{i=0}^{d} T^{i}((s_{i}+t_{i}) \cdot m) = \sum_{i=0}^{d} T^{i}(s_{i} \cdot m) + \sum_{i=0}^{d} T^{i}(t_{i} \cdot m) = s \cdot m + t \cdot m$$

and

$$(s \cdot t) \cdot m = \left(\sum_{i=0}^{2d} \left(\sum_{j=0}^{i} s_j t_{i-j}\right) Y^i\right) \cdot m = \sum_{i=0}^{2d} \sum_{j=0}^{i} s_j t_{i-j} \cdot T^i(m) =$$
$$= \sum_{k=0}^{d} \sum_{h=0}^{d} s_k t_h \cdot T^{k+h}(m) = \sum_{k=0}^{d} s_k \cdot T^k \left(\sum_{h=0}^{d} t_h \cdot T^h(m)\right) = s \cdot (t \cdot m)$$

The proof is finished, since we have also proven that the axioms of V-modules are satisfied.

6. Define a map

$$\phi: V \to R[X]$$
$$\sum_{i=0}^{d} s_i Y^i \mapsto \sum_{i=0}^{d} s_i X^i.$$

It is well-defined because of Point 3, and it is clearly surjective. The operations defined in V makes ϕ a ring homomorphism, whose kernel is trivial since a polynomial is zero if it only has zero coefficients. Hence this is an isomorphism of rings.

- **2.** Let *A* be a commutative ring
 - 1. Show that there exists a unique A-linear map

$$D: A[X] \to A[X]$$

such that

$$D(X^i) = iX^{i-1}, i \ge 1$$

 $D(1) = 0.$

Is D a ring homomorphism?

2. Prove that for all $P, Q \in A[X]$ one has

$$D(PQ) = PD(Q) + QD(P)$$

- 3. (Factorization Theorem) Now let A = K be a field, and $P \in K[X]$. Prove that for every $\alpha \in K$ one has $P(\alpha) = 0$ if and only if P is divisible by $X - \alpha$, that is, there is a polynomial $Q \in K[X]$ such that $P(X) = (X - \alpha)Q(X)$ [*Hint:* One implication is immediate. For the other, divide P by $X - \alpha$.]
- 4. We say that $\alpha \in K$ is a multiple root of $P \in K[X]$ if P is divisible by $(X \alpha)^2$. Prove: α is a multiple root of P if and only if $P(\alpha) = D(P)(\alpha) = 0$.

Solution:

1. First, notice that such a map D cannot be a ring homomorphism, since it sends $1 \mapsto 0 \neq 1$.

Since the X^i , $i \ge 0$, form a basis of A[X] as an A-module (as the isomorphism in Exercise 1.6 is easily seen to be an isomorphism of A-modules as well), for every map $f : \{X^i\} \to A[X]$ there exists a unique R-linear map $R[X] \to R[X]$ which behaves as f on the X^i . In this case, we can take $f : X^i \mapsto iX^{i-1}$. This is because of the Universal Property of free modules:

Theorem Let M be a free R-module $M = \bigoplus_{i \in I} R \cdot m_i$, and denote $B = \{m_i | i \in I\}$. Let N be another R-module. Then for every map $f : B \to N$ there exists a unique R-linear map $\alpha : M \to N$ such that $\alpha|_M = f$

Proof: Suppose that $m \in M$, then by hypothesis we have a unique decomposition $m = \sum_{i \in I} r_i \circ m_i$, with $r_i = 0$ for almost every $i \in I$. If $\alpha : M \to N$ is *R*-linear and $\alpha|_M = f$, then we have that $\alpha(m) = \sum_{i \in I} r_i \alpha(m_i) = \sum_{i \in I} r_i f(m_i)$ is uniquely determined, proving uniqueness of α . To conclude, we need to check that

$$\alpha(\sum_{i\in I}r_i\circ m_i)=\sum_{i\in I}r_if(m_i)$$

defines indeed an *R*-linear map. Uniqueness of the linear combination expressing $m \in M$ proves that α is well-defined, and linearity follows easily from the fact that linear combinations of linear combinations of the m_i 's are still linear combinations of the m_i .

2. The identity can be directly checked by writing $P = \sum_{i=0}^{m} a_i X^i$ and $Q = \sum_{j=0}^{n} b_j X^j$ and computing both sides. An equivalent (but faster) way to do this is to observe that both sides of the identity D(PQ) = PD(Q) + QD(P) are linear in P and in Q. Then it is enough to check the equality for an arbitrary P and $Q = X^k$, $k \ge 0$, and this is then equivalent to check the equality for $P = X^j$ and $Q = X^k$, with $j, k \ge 0$, which is immediate:

$$D(X^{j}X^{k}) = D(X^{j+k}) = (j+k)D^{j+k-1} = X^{j} \cdot kX^{k-1} + X^{k} \cdot jX^{j-1}$$

3. Suppose that $P \in K[X]$ is divisible by $(X - \alpha)$, that is, there is a polynomial $Q \in K[X]$ such that $P(X) = (X - \alpha)Q(X)$. Then clearly $P(\alpha) = 0 \cdot Q(0)$, so that α is a root of P.

Conversely, assume that $P(\alpha) = 0$. As seen in class, we can use Euclidean division to obtain polynomials Q(X), R(X) such that $P(X) = (X - \alpha)Q(X) + R(X)$ and $\deg(R) < \deg(X - \alpha) = 1$. Then $R(X) = r \in K$, and

$$0 = P(\alpha) = 0 \cdot Q(\alpha) + r = r,$$

so that P(X) is divisible by $X - \alpha$.

4. Suppose that $\alpha \in K$ is a multiple root of P, that is, $P(X) = (X - \alpha)^2 Q(X)$. Clearly, $P(\alpha) = 0$. Moreover, by Point 2 we have

$$D(P) = (X - \alpha)^2 D(Q) + QD((X - \alpha)^2) = (X - \alpha^2)D(Q) + 2(X - \alpha)Q,$$

from which $D(P)(\alpha) = 0$ just by substitution.

Conversely, assume that $P(\alpha) = D(P)(\alpha) = 0$. By previous point we can write $P = (X - \alpha)S$ for some polynomial $S \in K[X]$. Then by Point 2

$$D(P) = D((X - \alpha)S) = (X - \alpha)D(S) + S,$$

and the condition $D(P)(\alpha) = 0$ gives $S(\alpha) = 0$, so that S is again divisible by $X - \alpha$, and we can conclude that P is divisible by $(X - \alpha)^2$, so that α is a multiple root of P.

3. Let A be an integral domain. Show that $A[X]^{\times} = A^{\times}$.

Solution:

Of course, $A^{\times} \subseteq A[X]^{\times}$ because $A \subseteq A[X]$. To conclude, we just need to prove that any invertible $f \in A[X]$ is indeed in A^{\times} . Suppose that $f \in A[X]^{\times}$, and that fg = 1for some $g \in A[X]$. Of course f and g cannot be 0, so that we have well-defined $\deg(f), \deg(g) \ge 0$. Being A a domain, we have that $\deg(fg) = \deg(f) + \deg(g)$ (because the product of the leading coefficients is the leading coefficient of the product, as it cannot vanish). Hence $0 = \deg(1) = \deg(f) + \deg(g)$, and the only possibility is that $\deg(f) = \deg(g) = 0$. Hence $f, g \in A$, giving $f \in A^{\times}$.

- 4. Let K be a field, and consider the ideal I generated by X and Y in K[X, Y]. Show:
 - 1. I is not principal;
 - 2. I is maximal.

Solution:

- 1. By contradiction, suppose that I = (P) for some $P \in K[X, Y]$. Then there must exist $Q, R \in K[X, Y]$ such that $X = P \cdot Q$ and $Y = P \cdot R$. Notice that both K[X] and K[Y] are integral domains, so that regarding K[X, Y] as K[X][Y]or as K[Y][X] we have that both the degree in X and the degree in Y of a product of polynomials are the sum of the degrees of the polynomials. As P, Q, Rcannot be zero, they have a well-defined degree. In particular, we have 0 = $\deg_Y(X) = \deg_Y(P) + \deg_Y(Q)$, which implies $\deg_Y(P) = 0$, and $0 = \deg_X(Y) =$ $\deg_X(P) + \deg_X(R)$, which implies $\deg_X(P) = 0$. Then $P \in K$, since it is constant in both variables. In particular, $P \in K^{\times}$, so that $1 \in (P)$ and P = K[X, Y]. This means in particular that for some $A, B \in K[X, Y]$ we can write $X \cdot A + Y \cdot B = 1$, which is a contradiction (as evaluating the two sides of the equality at X = Y = 0we obtain 0 = 1, which is not true in a field. Hence I is a not a principal ideal.
- 2. We can do this by proving that K[X,Y]/(X,Y) is a field. Since we are adding to K two variables which then we set equal to zero (by quotienting over I), intuition suggests that $K[X,Y]/(X,Y) \cong K$, which is a field by hypothesis. This is true: consider the map

$$\phi: K[X, Y] \to K$$
$$P(X, Y) \mapsto P(0.0).$$

It is a ring homomorphism (as it is the composition of evaluation maps $K[X][Y] \rightarrow K[X] \rightarrow K$), and it is clearly surjective, as every element in K is its own counterimage. We claim that ker(ϕ) = (X, Y). The inclusion " \supseteq " is immediate. For the other inclusion, take $P \in \text{ker}(\phi)$. Dividing P by X and its remainder by Y, we obtain a constant $c \in K[X, Y]$ and polynomials $A \in K[X, Y]$, $B \in K[Y]$ such that P = XA + YB + c, and then evaluating the two sides at (0,0) we obtain 0 = P(0,0) = c, so that $P = XA + YB \in (X,Y)$.

To conclude, we apply First Isomorphism Theorem for rings, which gives an isomorphism $K[X,Y]/(X,Y) \cong K$ as desired.