
D-MATH Algebra I HS 14
Prof. Emmanuel Kowalski

Solutions of exercise sheet 8

The content of the marked exercises (*) should be known for the exam.

1. (*) [Formal construction of the polynomial ring] Let A be a commutative ring and
consider the set

V = {(ai) | i ∈ Z≥0, ai ∈ A, ai = 0 for i large enough}.

Endowing V with componentwise sum and with the scalar multiplication a · (ai) =
(a · ai), we have that V is an A-module. Define a multiplication

V × V → V

((ai), (bi)) 7→ (ai) · (bi) = (ci), ci =
∑
j,k≥0
j+k=i

ajbk

1. Show that this product is well defined.

2. Show that (1A, 0A, 0A, . . . ) is a neutral element for this product, and that the
product is associative, commutative and distributive with respect to addition.
This allows us to conclude that V is a ring.

3. Let Y := (αi), with α1 = 1A and αi = 0A for i 6= 1. For j ≥ 0, find the sequence
of elements βi for which Y j = (βi). Deduce that (Y j)j≥0 is a basis of V as an
A-module.

4. Let B be a commutative ring, f0 : A→ B a ring homomorphism and b ∈ B. Prove
that there exists a unique ring homomorphism f : V → B sending f(Y ) = b and
f(a · 1V ) = f0(a) for each a ∈ A.

5. Let M be an A-module and T : M → M an A-linear map. Show that there
exists a unique V -module structure ·V on M such that Y ·V m = T (m) and
(a · 1V ) ·V m = a ·A m. Moreover, show that if M is finitely generated as an
A-module, then so it is as a V -module. Is the converse true?

6. Prove that V and A[X] are isomorphic rings.

Solution:

1. We have that (ai) · (bi) defined as above is a uniquely determined sequence (ci) of
elements in Ai, for every (ai), (bi) ∈. The product is well-defined if this sequence
belongs to V , that is, if ci = 0 for i � 0. By hypothesis, there exists positive
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numbers n,m ≥ 0 such that ai = 0 for i ≥ n and bi = 0 for i ≥ m. Then one has
for every N ≥ n+m that

cN =
N∑
i=0

aibn+m−i =
m∑
i=0

aibn+m−i +
N∑

i=m+1

aibn+m−i = 0 + 0 = 0,

since for i ∈ {0, . . . ,m} we have n + m − i ≥ m, so that bn+m−i = 0, and for
i ∈ {m+ 1, . . . ,m+ n0} we have ai = 0.

2. First, notice that the product is commutative, as we can interchange the indexes
j and k in the sum appearing in the definition. Then we just need to check that
(ei) = (1, 0, 0, . . . ) is neutral on one side, and we have

(1, 0, 0, . . . ) · (ai) =
( ∑
j,k≥0
j+k=i

ejak

)
= (ai) ,

since for j 6= 0 we have ej = 0. Hence 1V := (1, 0, 0, . . . ) is a neutral element for
the multiplication.

As concerns associativity, for every (ai), (bi), (ci) ∈ V applying the definition we
have

((ai) · (bi)) · (ci) =
( i∑
j=0

ajbi−j

)
· (ci) =

( i∑
k=0

( k∑
j=0

ajbk−j

)
ci−k

)
=

=
( i∑
k=0

k∑
j=0

ajbk−jci−k

)
=
( ∑

α,β,γ≥0
α+β+γ=i

aαbβcγ

)

and

(ai) · ((bi) · (ci)) = (ai) ·
( i∑
k=0

bkci−k

)
=
( i∑
j=0

aj

( i−j∑
k=0

bkc(i−j)−k

))
=

=
( i∑
j=0

( i−j∑
k=0

ajbkci−j−k

))
=
( ∑

α,β,γ≥0
α+β+γ=i

aαbβcγ

)

so that the product is associative. Finally, we check distributivity with respect to
addition (only one side, being the product commutative): for every (ai), (bi), (ci) ∈
V we have

((ai) + (bi)) · (ci) = (ai + bi) · (ci) =
( i∑
j=0

(aj + bj)ci

)
=
( i∑
j=0

(ajci−j + bjci−j)
)

=

=
( i∑
j=0

(ajci−j)
)

+
( i∑
j=0

(bjci−j)
)

= (ai) · (ci) + (bi) · (ci).

So V is a ring with componentwise sum, multiplication defined as above, 0V =
(0, . . . ) and 1V = (1, 0, . . . ).
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3. For i, j ∈ Z≥0 we denote with δi,j ∈ A the Kronecher’s delta of i and j, which is 1
if i = j, and 0 otherwise. Then Y = (δi1)i. We claim that Y j = (δi,j)i for all j ≥ 0.
This is easily proven by induction. For j = 0, 1 this is clear. Now suppose that
Y k = (δi,k)i (inductive hypothesis) and let us prove that Y k+1 = (δi,(k+1))i. Write

Y k+1 = (ϑi). Then ϑk+1 =
∑

j,l≥0
j+l=k+1

δj,kδl,1 = 1, because we can make both δ’s

non-zero only when we choose j = k and l = 1, in which case we obtain 1 as
summand. On the other hand, for h 6= k+ 1 we see that ϑh =

∑
j,l≥0
j+l=h

δj,kδl,1 = 0,

because the couple of indexes (j, l) = (k, 1), which is the only one making both
δ’s non-zero, is not considered in the sum. In conclusion, Y k = (δi,k)i, that is, Y k

is the sequence with 1 in the k-th position and 0 everywhere else.

Then for every a = (ai) ∈ V we have that a =
∑

i:ai 6=0 aiY
i, which is a finite sum

by definition of V , so that (Y i)i∈Z≥0
spans all V over A. Moreover a finite linear

combination
∑m

j=0 aij ·Y ij , where the ij ’s are distinct indexes in Z≥0 is zero if and

only if all the aij are zero, so that we can conclude that (Y i)i∈Z≥0
is an R-basis

for V . As the set of indexes i such that ai 6= 0 is finite, there exists d ∈ Z bigger
or equal than all those i’s, and we can rewrite a =

∑
i≤d aiY

i. Notice that since

the Y j are R-linear independent, this decomposition is unique up to choosing a
different d, in which case we can just have fewer/more zero summand.

4. We first prove uniqueness and then existence. Also, by abuse of notation, for
r ∈ A we write r = r · 1V ∈ V . It is the sequence with r in the 0-th position and
0 everywhere else.

Suppose that f : V → B is a ring homomorphism sending A 3 a 7→ f0(a) and
Y 7→ b. Then by applying previous point, for s ∈ V we can write s =

∑d
i=0 siY

i

for some si ∈ A and d ∈ Z≥0, giving

f(s) = f
( d∑
i=0

siY
i
)

=
d∑
i=0

f(si)f(Y i) =
d∑
i=0

f0(si)f(Y i) =
d∑
i=0

f0(si)b
i,

which means that f has a prescribed behavior on all V , that is, if f exists it is
unique.

To prove existence, we just check that the definition for f on s that we found
while proving uniqueness, that is,

f
( d∑
i=0

siY
i
)

=

d∑
i=0

f0(si)b
i

gives indeed a ring homomorphism. First, notice that this is a good definition
because the decomposition s =

∑d
i=0 siY

i is unique up to extra zero-summand,
and f0(0) = 0 being f0 a ring homomorphism. Then we have f(0) = f(0 · Y 0) =
f0(0)b0 = 0, and f(1) = f(1·Y 0) = f0(1)b0 = 1 being f0 a ring homomorphism. To
conclude, we prove that f respects sums and multiplications. For every s, t ∈ V ,
we let d be big enough so that we can write s =

∑d
i=0 siY

i and t =
∑d

i=0 tiY
i.
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Now

f(s+ t) =f
( d∑
i=0

(si + ti)Y
i
)

=
d∑
i=0

f0(si + ti)b
i =

=
d∑
i=0

(f0(si) + f0(ti))b
i =

d∑
i=0

f0(si)b
i +

d∑
i=0

f0(si)b
i =

= f
( d∑
i=0

siY
i
)

+ f
( d∑
i=0

tiY
i
)

= f(s) + f(t),

and

f(s · t) =f
( 2d∑
i=0

( i∑
j=0

sjti−j

)
Y i
)

= f
( 2d∑
i=0

f0

( i∑
j=0

sjti−j

)
bi
)

=

=

2d∑
i=0

( i∑
j=0

f0(sj)f0(ti−j)
)
bi =

d∑
i=0

f0(si)b
i ·

d∑
i=0

f0(ti)b
i = f(s) · f(t),

and f : V → B is a ring homomorphism which maps Y 7→ b and A 3 a 7→ f0(a).

5. Similarly as in previous point, we first prove uniqueness, and then existence. By
hypothesis, we have an A-module structure on M , and an A-linear map T : M →
M .

Suppose we have that M has also a V -module structure with Y ·m = T (m) and
with a ∈ A acting on m ∈ M as it does with respect to the given A-module
structure. Then for every s =

∑d
i=0 siY

i ∈ V and m ∈M we have

s ·m =
( d∑
i=0

siY
i
)
·m =

d∑
i=0

si · T i(m) =
d∑
i=0

T i(si ·m),

so that s ·m is uniquely determined, and the V -module structure is unique, if it
exists.

Disclaimer: Notice that by T i we denote the multiplication of T with itself in the
ring of additive endomorphisms End(M), which is just the i-th iteration of the
endomorphism T .

Now we prove existence, by checking that the definition we found,

( d∑
i=0

siY
i
)
·m =

d∑
i=0

T i(si ·m),

gives indeed a V -module structure on M coinciding with the one of A-module on
elements a ∈ A and satisfies Y ·m = T (m). Those properties are clear from the
definition, which is well-given as the decomposition s =

∑d
i=0 siY

i is unique up to
adding zero summands, and 0A ·m = 0 by hypothesis. Clearly, for every m ∈ M
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we have 1V ·m = (1 · Y 0) ·m = T 0(1 ·m) = m. Now we check that s· is additive
for every s =

∑d
i=0 siY

i ∈ V : for every m,n ∈M , we have indeed:

s · (m+ n) =
( d∑
i=0

siY
i
)
· (m+ n) =

d∑
i=0

T i(si · (m+ n)) =

=
d∑
i=0

T i(si · (m)) +
d∑
i=0

T i(si · (n)) = s ·m+ s · n.

Now we check compatibility with operations in V . For every m ∈M and s, t ∈ V ,
with s =

∑d
i=0 siY

i and t =
∑d

i=0 tiY
i, we have

(s+ t) ·m =
d∑
i=0

T i((si + ti) ·m) =
d∑
i=0

T i(si ·m)+ =
d∑
i=0

T i(ti ·m) = s ·m+ t ·m

and

(s · t) ·m =
( 2d∑
i=0

( i∑
j=0

sjti−j

)
Y i
)
·m =

2d∑
i=0

i∑
j=0

sjti−j · T i(m) =

=

d∑
k=0

d∑
h=0

skth · T k+h(m) =

d∑
k=0

sk · T k
( d∑
h=0

th · T h(m)
)

= s · (t ·m)

The proof is finished, since we have also proven that the axioms of V -modules are
satisfied.

6. Define a map

φ : V → R[X]

d∑
i=0

siY
i 7→

d∑
i=0

siX
i.

It is well-defined because of Point 3, and it is clearly surjective. The operations
defined in V makes φ a ring homomorphism, whose kernel is trivial since a poly-
nomial is zero if it only has zero coefficients. Hence this is an isomorphism of
rings.

2. Let A be a commutative ring

1. Show that there exists a unique A-linear map

D : A[X]→ A[X]

such that

D(Xi) = iXi−1, i ≥ 1

D(1) = 0.

Is D a ring homomorphism?
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2. Prove that for all P,Q ∈ A[X] one has

D(PQ) = PD(Q) +QD(P )

3. (Factorization Theorem) Now let A = K be a field, and P ∈ K[X]. Prove that
for every α ∈ K one has P (α) = 0 if and only if P is divisible by X − α, that
is, there is a polynomial Q ∈ K[X] such that P (X) = (X − α)Q(X) [Hint: One
implication is immediate. For the other, divide P by X − α.]

4. We say that α ∈ K is a multiple root of P ∈ K[X] if P is divisible by (X − α)2.
Prove: α is a multiple root of P if and only if P (α) = D(P )(α) = 0.

Solution:

1. First, notice that such a map D cannot be a ring homomorphism, since it sends
1 7→ 0 6= 1.

Since the Xi, i ≥ 0, form a basis of A[X] as an A-module (as the isomorphism in
Exercise 1.6 is easily seen to be an isomorphism of A-modules as well), for every
map f : {Xi} → A[X] there exists a unique R-linear map R[X] → R[X] which
behaves as f on the Xi. In this case, we can take f : Xi 7→ iXi−1. This is because
of the Universal Property of free modules:

Theorem Let M be a free R-module M =
⊕

i∈I R ·mi, and denote B = {mi|i ∈ I}.
Let N be another R-module. Then for every map f : B → N there exists a unique
R-linear map α : M → N such that α|M = f

Proof: Suppose that m ∈ M , then by hypothesis we have a unique decomposition
m =

∑
i∈I ri ◦ mi, with ri = 0 for almost every i ∈ I. If α : M → N is R-linear

and α|M = f , then we have that α(m) =
∑

i∈I riα(mi) =
∑

i∈I rif(mi) is uniquely
determined, proving uniqueness of α. To conclude, we need to check that

α(
∑
i∈I

ri ◦mi) =
∑
i∈I

rif(mi)

defines indeed an R-linear map. Uniqueness of the linear combination expressing m ∈
M proves that α is well-defined, and linearity follows easily from the fact that linear
combinations of linear combinations of the mi’s are still linear combinations of the
mi.

2. The identity can be directly checked by writing P =
∑m

i=0 aiX
i andQ =

∑n
j=0 bjX

j

and computing both sides. An equivalent (but faster) way to do this is to observe
that both sides of the identity D(PQ) = PD(Q) +QD(P ) are linear in P and in
Q. Then it is enough to check the equality for an arbitrary P and Q = Xk, k ≥ 0,
and this is then equivalent to check the equality for P = Xj and Q = Xk, with
j, k ≥ 0, which is immediate:

D(XjXk) = D(Xj+k) = (j + k)Dj+k−1 = Xj · kXk−1 +Xk · jXj−1.
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3. Suppose that P ∈ K[X] is divisible by (X − α), that is, there is a polynomial
Q ∈ K[X] such that P (X) = (X−α)Q(X). Then clearly P (α) = 0 ·Q(0), so that
α is a root of P .

Conversely, assume that P (α) = 0. As seen in class, we can use Euclidean division
to obtain polynomials Q(X), R(X) such that P (X) = (X − α)Q(X) +R(X) and
deg(R) < deg(X − α) = 1. Then R(X) = r ∈ K, and

0 = P (α) = 0 ·Q(α) + r = r,

so that P (X) is divisible by X − α.

4. Suppose that α ∈ K is a multiple root of P , that is, P (X) = (X − α)2Q(X).
Clearly, P (α) = 0. Moreover, by Point 2 we have

D(P ) = (X − α)2D(Q) +QD((X − α)2) = (X − α2)D(Q) + 2(X − α)Q,

from which D(P )(α) = 0 just by substitution.

Conversely, assume that P (α) = D(P )(α) = 0. By previous point we can write
P = (X − α)S for some polynomial S ∈ K[X]. Then by Point 2

D(P ) = D((X − α)S) = (X − α)D(S) + S,

and the condition D(P )(α) = 0 gives S(α) = 0, so that S is again divisible by
X−α, and we can conclude that P is divisible by (X−α)2, so that α is a multiple
root of P .

3. Let A be an integral domain. Show that A[X]× = A×.

Solution:

Of course, A× ⊆ A[X]× because A ⊆ A[X]. To conclude, we just need to prove that
any invertible f ∈ A[X] is indeed in A×. Suppose that f ∈ A[X]×, and that fg = 1
for some g ∈ A[X]. Of course f and g cannot be 0, so that we have well-defined
deg(f),deg(g) ≥ 0. Being A a domain, we have that deg(fg) = deg(f) + deg(g)
(because the product of the leading coefficients is the leading coefficient of the product,
as it cannot vanish). Hence 0 = deg(1) = deg(f) + deg(g), and the only possibility is
that deg(f) = deg(g) = 0. Hence f, g ∈ A, giving f ∈ A×.

4. Let K be a field, and consider the ideal I generated by X and Y in K[X,Y ]. Show:

1. I is not principal;

2. I is maximal.

Solution:
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1. By contradiction, suppose that I = (P ) for some P ∈ K[X,Y ]. Then there
must exist Q,R ∈ K[X,Y ] such that X = P · Q and Y = P · R. Notice that
both K[X] and K[Y ] are integral domains, so that regarding K[X,Y ] as K[X][Y ]
or as K[Y ][X] we have that both the degree in X and the degree in Y of a
product of polynomials are the sum of the degrees of the polynomials. As P,Q,R
cannot be zero, they have a well-defined degree. In particular, we have 0 =
degY (X) = degY (P ) + degY (Q), which implies degY (P ) = 0, and 0 = degX(Y ) =
degX(P )+degX(R), which implies degX(P ) = 0. Then P ∈ K, since it is constant
in both variables. In particular, P ∈ K×, so that 1 ∈ (P ) and P = K[X,Y ]. This
means in particular that for some A,B ∈ K[X,Y ] we can write X ·A+Y ·B = 1,
which is a contradiction (as evaluating the two sides of the equality at X = Y = 0
we obtain 0 = 1, which is not true in a field. Hence I is a not a principal ideal.

2. We can do this by proving that K[X,Y ]/(X,Y ) is a field. Since we are adding to
K two variables which then we set equal to zero (by quotienting over I), intuition
suggests that K[X,Y ]/(X,Y ) ∼= K, which is a field by hypothesis. This is true:
consider the map

φ : K[X,Y ]→ K

P (X,Y ) 7→ P (0.0).

It is a ring homomorphism (as it is the composition of evaluation maps K[X][Y ]→
K[X] → K), and it is clearly surjective, as every element in K is its own coun-
terimage. We claim that ker(φ) = (X,Y ). The inclusion “⊇” is immediate. For
the other inclusion, take P ∈ ker(φ). Dividing P by X and its remainder by Y ,
we obtain a constant c ∈ K[X,Y ] and polynomials A ∈ K[X,Y ], B ∈ K[Y ] such
that P = XA + Y B + c, and then evaluating the two sides at (0, 0) we obtain
0 = P (0, 0) = c, so that P = XA+ Y B ∈ (X,Y ).

To conclude, we apply First Isomorphism Theorem for rings, which gives an iso-
morphism K[X,Y ]/(X,Y ) ∼= K as desired.


