Solutions of exercise sheet 8

The content of the marked exercises (*) should be known for the exam.

1. (*) [Formal construction of the polynomial ring] Let A be a commutative ring and consider the set

$$
V=\left\{\left(a_{i}\right) \mid i \in \mathbb{Z}_{\geq 0}, a_{i} \in A, a_{i}=0 \text { for } i \text { large enough }\right\} .
$$

Endowing V with componentwise sum and with the scalar multiplication $a \cdot\left(a_{i}\right)=$ $\left(a \cdot a_{i}\right)$, we have that V is an A-module. Define a multiplication

$$
\begin{aligned}
V \times V & \rightarrow V \\
\left(\left(a_{i}\right),\left(b_{i}\right)\right) & \mapsto\left(a_{i}\right) \cdot\left(b_{i}\right)=\left(c_{i}\right), c_{i}=\sum_{\substack{j, k \geq 0 \\
j+k=i}} a_{j} b_{k}
\end{aligned}
$$

1. Show that this product is well defined.
2. Show that $\left(1_{A}, 0_{A}, 0_{A}, \ldots\right)$ is a neutral element for this product, and that the product is associative, commutative and distributive with respect to addition. This allows us to conclude that V is a ring.
3. Let $Y:=\left(\alpha_{i}\right)$, with $\alpha_{1}=1_{A}$ and $\alpha_{i}=0_{A}$ for $i \neq 1$. For $j \geq 0$, find the sequence of elements β_{i} for which $Y^{j}=\left(\beta_{i}\right)$. Deduce that $\left(Y^{j}\right)_{j \geq 0}$ is a basis of V as an A-module.
4. Let B be a commutative ring, $f_{0}: A \rightarrow B$ a ring homomorphism and $b \in B$. Prove that there exists a unique ring homomorphism $f: V \rightarrow B$ sending $f(Y)=b$ and $f\left(a \cdot 1_{V}\right)=f_{0}(a)$ for each $a \in A$.
5. Let M be an A-module and $T: M \rightarrow M$ an A-linear map. Show that there exists a unique V-module structure $\cdot V$ on M such that $Y \cdot{ }_{V} m=T(m)$ and $\left(a \cdot 1_{V}\right) \cdot V m=a \cdot A m$. Moreover, show that if M is finitely generated as an A-module, then so it is as a V-module. Is the converse true?
6. Prove that V and $A[X]$ are isomorphic rings.

Solution:

1. We have that $\left(a_{i}\right) \cdot\left(b_{i}\right)$ defined as above is a uniquely determined sequence $\left(c_{i}\right)$ of elements in A_{i}, for every $\left(a_{i}\right),\left(b_{i}\right) \in$. The product is well-defined if this sequence belongs to V, that is, if $c_{i}=0$ for $i \gg 0$. By hypothesis, there exists positive
numbers $n, m \geq 0$ such that $a_{i}=0$ for $i \geq n$ and $b_{i}=0$ for $i \geq m$. Then one has for every $N \geq n+m$ that

$$
c_{N}=\sum_{i=0}^{N} a_{i} b_{n+m-i}=\sum_{i=0}^{m} a_{i} b_{n+m-i}+\sum_{i=m+1}^{N} a_{i} b_{n+m-i}=0+0=0,
$$

since for $i \in\{0, \ldots, m\}$ we have $n+m-i \geq m$, so that $b_{n+m-i}=0$, and for $i \in\{m+1, \ldots, m+n 0\}$ we have $a_{i}=0$.
2. First, notice that the product is commutative, as we can interchange the indexes j and k in the sum appearing in the definition. Then we just need to check that $\left(e_{i}\right)=(1,0,0, \ldots)$ is neutral on one side, and we have

$$
(1,0,0, \ldots) \cdot\left(a_{i}\right)=\left(\sum_{\substack{j, k \geq 0 \\ j+k=i}} e_{j} a_{k}\right)=\left(a_{i}\right)
$$

since for $j \neq 0$ we have $e_{j}=0$. Hence $1_{V}:=(1,0,0, \ldots)$ is a neutral element for the multiplication.
As concerns associativity, for every $\left(a_{i}\right),\left(b_{i}\right),\left(c_{i}\right) \in V$ applying the definition we have

$$
\begin{aligned}
\left(\left(a_{i}\right) \cdot\left(b_{i}\right)\right) \cdot\left(c_{i}\right) & =\left(\sum_{j=0}^{i} a_{j} b_{i-j}\right) \cdot\left(c_{i}\right)=\left(\sum_{k=0}^{i}\left(\sum_{j=0}^{k} a_{j} b_{k-j}\right) c_{i-k}\right)= \\
& =\left(\sum_{k=0}^{i} \sum_{j=0}^{k} a_{j} b_{k-j} c_{i-k}\right)=\left(\sum_{\substack{\alpha, \beta, \gamma>0 \\
\alpha+\beta+\gamma=i}} a_{\alpha} b_{\beta} c_{\gamma}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(a_{i}\right) \cdot\left(\left(b_{i}\right) \cdot\left(c_{i}\right)\right) & =\left(a_{i}\right) \cdot\left(\sum_{k=0}^{i} b_{k} c_{i-k}\right)=\left(\sum_{j=0}^{i} a_{j}\left(\sum_{k=0}^{i-j} b_{k} c_{(i-j)-k}\right)\right)= \\
& =\left(\sum_{j=0}^{i}\left(\sum_{k=0}^{i-j} a_{j} b_{k} c_{i-j-k}\right)\right)=\left(\sum_{\substack{\alpha, \beta, \gamma \geq 0 \\
\alpha+\beta+\gamma=i}} a_{\alpha} b_{\beta} c_{\gamma}\right)
\end{aligned}
$$

so that the product is associative. Finally, we check distributivity with respect to addition (only one side, being the product commutative): for every $\left(a_{i}\right),\left(b_{i}\right),\left(c_{i}\right) \in$ V we have

$$
\begin{aligned}
\left(\left(a_{i}\right)+\left(b_{i}\right)\right) \cdot\left(c_{i}\right) & =\left(a_{i}+b_{i}\right) \cdot\left(c_{i}\right)=\left(\sum_{j=0}^{i}\left(a_{j}+b_{j}\right) c_{i}\right)=\left(\sum_{j=0}^{i}\left(a_{j} c_{i-j}+b_{j} c_{i-j}\right)\right)= \\
& =\left(\sum_{j=0}^{i}\left(a_{j} c_{i-j}\right)\right)+\left(\sum_{j=0}^{i}\left(b_{j} c_{i-j}\right)\right)=\left(a_{i}\right) \cdot\left(c_{i}\right)+\left(b_{i}\right) \cdot\left(c_{i}\right) .
\end{aligned}
$$

So V is a ring with componentwise sum, multiplication defined as above, $0_{V}=$ $(0, \ldots)$ and $1_{V}=(1,0, \ldots)$.
3. For $i, j \in \mathbb{Z}_{\geq 0}$ we denote with $\delta_{i, j} \in A$ the Kronecher's delta of i and j, which is 1 if $i=j$, and 0 otherwise. Then $Y=\left(\delta_{i 1}\right)_{i}$. We claim that $Y^{j}=\left(\delta_{i, j}\right)_{i}$ for all $j \geq 0$. This is easily proven by induction. For $j=0,1$ this is clear. Now suppose that $Y^{k}=\left(\delta_{i, k}\right)_{i}$ (inductive hypothesis) and let us prove that $Y^{k+1}=\left(\delta_{i,(k+1)}\right)_{i}$. Write $Y^{k+1}=\left(\vartheta_{i}\right)$. Then $\vartheta_{k+1}=\sum_{\substack{j, l \geq 0 \\ j+l=k+1}} \delta_{j, k} \delta_{l, 1}=1$, because we can make both δ 's non-zero only when we choose $j=k$ and $l=1$, in which case we obtain 1 as summand. On the other hand, for $h \neq k+1$ we see that $\vartheta_{h}=\sum_{\substack{j, l \geq 0 \\ j+l=h}} \delta_{j, k} \delta_{l, 1}=0$, because the couple of indexes $(j, l)=(k, 1)$, which is the only one making both δ 's non-zero, is not considered in the sum. In conclusion, $Y^{k}=\left(\delta_{i, k}\right)_{i}$, that is, Y^{k} is the sequence with 1 in the k-th position and 0 everywhere else.
Then for every $a=\left(a_{i}\right) \in V$ we have that $a=\sum_{i: a_{i} \neq 0} a_{i} Y^{i}$, which is a finite sum by definition of V, so that $\left(Y^{i}\right)_{i \in \mathbb{Z}}{ }_{\geq 0}$ spans all V over A. Moreover a finite linear combination $\sum_{j=0}^{m} a_{i_{j}} \cdot Y^{i_{j}}$, where the i_{j} 's are distinct indexes in $\mathbb{Z}_{\geq 0}$ is zero if and only if all the $a_{i_{j}}$ are zero, so that we can conclude that $\left(Y^{i}\right)_{i \in \mathbb{Z} \geq 0}$ is an R-basis for V. As the set of indexes i such that $a_{i} \neq 0$ is finite, there exists $d \in \mathbb{Z}$ bigger or equal than all those i 's, and we can rewrite $a=\sum_{i \leq d} a_{i} Y^{i}$. Notice that since the Y^{j} are R-linear independent, this decomposition is unique up to choosing a different d, in which case we can just have fewer/more zero summand.
4. We first prove uniqueness and then existence. Also, by abuse of notation, for $r \in A$ we write $r=r \cdot 1_{V} \in V$. It is the sequence with r in the 0 -th position and 0 everywhere else.
Suppose that $f: V \rightarrow B$ is a ring homomorphism sending $A \ni a \mapsto f_{0}(a)$ and $Y \mapsto b$. Then by applying previous point, for $s \in V$ we can write $s=\sum_{i=0}^{d} s_{i} Y^{i}$ for some $s_{i} \in A$ and $d \in \mathbb{Z}_{\geq 0}$, giving

$$
f(s)=f\left(\sum_{i=0}^{d} s_{i} Y^{i}\right)=\sum_{i=0}^{d} f\left(s_{i}\right) f\left(Y^{i}\right)=\sum_{i=0}^{d} f_{0}\left(s_{i}\right) f\left(Y^{i}\right)=\sum_{i=0}^{d} f_{0}\left(s_{i}\right) b^{i}
$$

which means that f has a prescribed behavior on all V, that is, if f exists it is unique.
To prove existence, we just check that the definition for f on s that we found while proving uniqueness, that is,

$$
f\left(\sum_{i=0}^{d} s_{i} Y^{i}\right)=\sum_{i=0}^{d} f_{0}\left(s_{i}\right) b^{i}
$$

gives indeed a ring homomorphism. First, notice that this is a good definition because the decomposition $s=\sum_{i=0}^{d} s_{i} Y^{i}$ is unique up to extra zero-summand, and $f_{0}(0)=0$ being f_{0} a ring homomorphism. Then we have $f(0)=f\left(0 \cdot Y^{0}\right)=$ $f_{0}(0) b^{0}=0$, and $f(1)=f\left(1 \cdot Y^{0}\right)=f_{0}(1) b^{0}=1$ being f_{0} a ring homomorphism. To conclude, we prove that f respects sums and multiplications. For every $s, t \in V$, we let d be big enough so that we can write $s=\sum_{i=0}^{d} s_{i} Y^{i}$ and $t=\sum_{i=0}^{d} t_{i} Y^{i}$.

Now

$$
\begin{aligned}
f(s+t)= & f\left(\sum_{i=0}^{d}\left(s_{i}+t_{i}\right) Y^{i}\right)=\sum_{i=0}^{d} f_{0}\left(s_{i}+t_{i}\right) b^{i}= \\
= & \sum_{i=0}^{d}\left(f_{0}\left(s_{i}\right)+f_{0}\left(t_{i}\right)\right) b^{i}=\sum_{i=0}^{d} f_{0}\left(s_{i}\right) b^{i}+\sum_{i=0}^{d} f_{0}\left(s_{i}\right) b^{i}= \\
& =f\left(\sum_{i=0}^{d} s_{i} Y^{i}\right)+f\left(\sum_{i=0}^{d} t_{i} Y^{i}\right)=f(s)+f(t),
\end{aligned}
$$

and

$$
\begin{aligned}
f(s \cdot t)= & f\left(\sum_{i=0}^{2 d}\left(\sum_{j=0}^{i} s_{j} t_{i-j}\right) Y^{i}\right)=f\left(\sum_{i=0}^{2 d} f_{0}\left(\sum_{j=0}^{i} s_{j} t_{i-j}\right) b^{i}\right)= \\
& =\sum_{i=0}^{2 d}\left(\sum_{j=0}^{i} f_{0}\left(s_{j}\right) f_{0}\left(t_{i-j}\right)\right) b^{i}=\sum_{i=0}^{d} f_{0}\left(s_{i}\right) b^{i} \cdot \sum_{i=0}^{d} f_{0}\left(t_{i}\right) b^{i}=f(s) \cdot f(t),
\end{aligned}
$$

and $f: V \rightarrow B$ is a ring homomorphism which maps $Y \mapsto b$ and $A \ni a \mapsto f_{0}(a)$.
5. Similarly as in previous point, we first prove uniqueness, and then existence. By hypothesis, we have an A-module structure on M, and an A-linear map $T: M \rightarrow$ M.
Suppose we have that M has also a V-module structure with $Y \cdot m=T(m)$ and with $a \in A$ acting on $m \in M$ as it does with respect to the given A-module structure. Then for every $s=\sum_{i=0}^{d} s_{i} Y^{i} \in V$ and $m \in M$ we have

$$
s \cdot m=\left(\sum_{i=0}^{d} s_{i} Y^{i}\right) \cdot m=\sum_{i=0}^{d} s_{i} \cdot T^{i}(m)=\sum_{i=0}^{d} T^{i}\left(s_{i} \cdot m\right),
$$

so that $s \cdot m$ is uniquely determined, and the V-module structure is unique, if it exists.
Disclaimer: Notice that by T^{i} we denote the multiplication of T with itself in the ring of additive endomorphisms $\operatorname{End}(M)$, which is just the i-th iteration of the endomorphism T.
Now we prove existence, by checking that the definition we found,

$$
\left(\sum_{i=0}^{d} s_{i} Y^{i}\right) \cdot m=\sum_{i=0}^{d} T^{i}\left(s_{i} \cdot m\right),
$$

gives indeed a V-module structure on M coinciding with the one of A-module on elements $a \in A$ and satisfies $Y \cdot m=T(m)$. Those properties are clear from the definition, which is well-given as the decomposition $s=\sum_{i=0}^{d} s_{i} Y^{i}$ is unique up to adding zero summands, and $0_{A} \cdot m=0$ by hypothesis. Clearly, for every $m \in M$
we have $1_{V} \cdot m=\left(1 \cdot Y^{0}\right) \cdot m=T^{0}(1 \cdot m)=m$. Now we check that s. is additive for every $s=\sum_{i=0}^{d} s_{i} Y^{i} \in V$: for every $m, n \in M$, we have indeed:

$$
\begin{aligned}
s \cdot(m+n) & =\left(\sum_{i=0}^{d} s_{i} Y^{i}\right) \cdot(m+n)=\sum_{i=0}^{d} T^{i}\left(s_{i} \cdot(m+n)\right)= \\
& =\sum_{i=0}^{d} T^{i}\left(s_{i} \cdot(m)\right)+\sum_{i=0}^{d} T^{i}\left(s_{i} \cdot(n)\right)=s \cdot m+s \cdot n .
\end{aligned}
$$

Now we check compatibility with operations in V. For every $m \in M$ and $s, t \in V$, with $s=\sum_{i=0}^{d} s_{i} Y^{i}$ and $t=\sum_{i=0}^{d} t_{i} Y^{i}$, we have
$(s+t) \cdot m=\sum_{i=0}^{d} T^{i}\left(\left(s_{i}+t_{i}\right) \cdot m\right)=\sum_{i=0}^{d} T^{i}\left(s_{i} \cdot m\right)+=\sum_{i=0}^{d} T^{i}\left(t_{i} \cdot m\right)=s \cdot m+t \cdot m$
and

$$
\begin{aligned}
(s \cdot t) \cdot m & =\left(\sum_{i=0}^{2 d}\left(\sum_{j=0}^{i} s_{j} t_{i-j}\right) Y^{i}\right) \cdot m=\sum_{i=0}^{2 d} \sum_{j=0}^{i} s_{j} t_{i-j} \cdot T^{i}(m)= \\
& =\sum_{k=0}^{d} \sum_{h=0}^{d} s_{k} t_{h} \cdot T^{k+h}(m)=\sum_{k=0}^{d} s_{k} \cdot T^{k}\left(\sum_{h=0}^{d} t_{h} \cdot T^{h}(m)\right)=s \cdot(t \cdot m)
\end{aligned}
$$

The proof is finished, since we have also proven that the axioms of V-modules are satisfied.
6. Define a map

$$
\begin{aligned}
\phi: V & \rightarrow R[X] \\
\sum_{i=0}^{d} s_{i} Y^{i} & \mapsto \sum_{i=0}^{d} s_{i} X^{i} .
\end{aligned}
$$

It is well-defined because of Point 3, and it is clearly surjective. The operations defined in V makes ϕ a ring homomorphism, whose kernel is trivial since a polynomial is zero if it only has zero coefficients. Hence this is an isomorphism of rings.
2. Let A be a commutative ring

1. Show that there exists a unique A-linear map

$$
D: A[X] \rightarrow A[X]
$$

such that

$$
\begin{aligned}
D\left(X^{i}\right) & =i X^{i-1}, \quad i \geq 1 \\
D(1) & =0 .
\end{aligned}
$$

Is D a ring homomorphism?
2. Prove that for all $P, Q \in A[X]$ one has

$$
D(P Q)=P D(Q)+Q D(P)
$$

3. (Factorization Theorem) Now let $A=K$ be a field, and $P \in K[X]$. Prove that for every $\alpha \in K$ one has $P(\alpha)=0$ if and only if P is divisible by $X-\alpha$, that is, there is a polynomial $Q \in K[X]$ such that $P(X)=(X-\alpha) Q(X)$ [Hint: One implication is immediate. For the other, divide P by $X-\alpha$.]
4. We say that $\alpha \in K$ is a multiple root of $P \in K[X]$ if P is divisible by $(X-\alpha)^{2}$. Prove: α is a multiple root of P if and only if $P(\alpha)=D(P)(\alpha)=0$.

Solution:

1. First, notice that such a map D cannot be a ring homomorphism, since it sends $1 \mapsto 0 \neq 1$.
Since the $X^{i}, i \geq 0$, form a basis of $A[X]$ as an A-module (as the isomorphism in Exercise 1.6 is easily seen to be an isomorphism of A-modules as well), for every map $f:\left\{X^{i}\right\} \rightarrow A[X]$ there exists a unique R-linear map $R[X] \rightarrow R[X]$ which behaves as f on the X^{i}. In this case, we can take $f: X^{i} \mapsto i X^{i-1}$. This is because of the Universal Property of free modules:

Theorem Let M be a free R-module $M=\bigoplus_{i \in I} R \cdot m_{i}$, and denote $B=\left\{m_{i} \mid i \in I\right\}$. Let N be another R-module. Then for every map $f: B \rightarrow N$ there exists a unique R-linear map $\alpha: M \rightarrow N$ such that $\left.\alpha\right|_{M}=f$

Proof: Suppose that $m \in M$, then by hypothesis we have a unique decomposition $m=\sum_{i \in I} r_{i} \circ m_{i}$, with $r_{i}=0$ for almost every $i \in I$. If $\alpha: M \rightarrow N$ is R-linear and $\left.\alpha\right|_{M}=f$, then we have that $\alpha(m)=\sum_{i \in I} r_{i} \alpha\left(m_{i}\right)=\sum_{i \in I} r_{i} f\left(m_{i}\right)$ is uniquely determined, proving uniqueness of α. To conclude, we need to check that

$$
\alpha\left(\sum_{i \in I} r_{i} \circ m_{i}\right)=\sum_{i \in I} r_{i} f\left(m_{i}\right)
$$

defines indeed an R-linear map. Uniqueness of the linear combination expressing $m \in$ M proves that α is well-defined, and linearity follows easily from the fact that linear combinations of linear combinations of the m_{i} 's are still linear combinations of the m_{i}.
2. The identity can be directly checked by writing $P=\sum_{i=0}^{m} a_{i} X^{i}$ and $Q=\sum_{j=0}^{n} b_{j} X^{j}$ and computing both sides. An equivalent (but faster) way to do this is to observe that both sides of the identity $D(P Q)=P D(Q)+Q D(P)$ are linear in P and in Q. Then it is enough to check the equality for an arbitrary P and $Q=X^{k}, k \geq 0$, and this is then equivalent to check the equality for $P=X^{j}$ and $Q=X^{k}$, with $j, k \geq 0$, which is immediate:

$$
D\left(X^{j} X^{k}\right)=D\left(X^{j+k}\right)=(j+k) D^{j+k-1}=X^{j} \cdot k X^{k-1}+X^{k} \cdot j X^{j-1} .
$$

3. Suppose that $P \in K[X]$ is divisible by $(X-\alpha)$, that is, there is a polynomial $Q \in K[X]$ such that $P(X)=(X-\alpha) Q(X)$. Then clearly $P(\alpha)=0 \cdot Q(0)$, so that α is a root of P.
Conversely, assume that $P(\alpha)=0$. As seen in class, we can use Euclidean division to obtain polynomials $Q(X), R(X)$ such that $P(X)=(X-\alpha) Q(X)+R(X)$ and $\operatorname{deg}(R)<\operatorname{deg}(X-\alpha)=1$. Then $R(X)=r \in K$, and

$$
0=P(\alpha)=0 \cdot Q(\alpha)+r=r,
$$

so that $P(X)$ is divisible by $X-\alpha$.
4. Suppose that $\alpha \in K$ is a multiple root of P, that is, $P(X)=(X-\alpha)^{2} Q(X)$. Clearly, $P(\alpha)=0$. Moreover, by Point 2 we have

$$
D(P)=(X-\alpha)^{2} D(Q)+Q D\left((X-\alpha)^{2}\right)=\left(X-\alpha^{2}\right) D(Q)+2(X-\alpha) Q,
$$

from which $D(P)(\alpha)=0$ just by substitution.
Conversely, assume that $P(\alpha)=D(P)(\alpha)=0$. By previous point we can write $P=(X-\alpha) S$ for some polynomial $S \in K[X]$. Then by Point 2

$$
D(P)=D((X-\alpha) S)=(X-\alpha) D(S)+S
$$

and the condition $D(P)(\alpha)=0$ gives $S(\alpha)=0$, so that S is again divisible by $X-\alpha$, and we can conclude that P is divisible by $(X-\alpha)^{2}$, so that α is a multiple root of P.
3. Let A be an integral domain. Show that $A[X]^{\times}=A^{\times}$.

Solution:

Of course, $A^{\times} \subseteq A[X]^{\times}$because $A \subseteq A[X]$. To conclude, we just need to prove that any invertible $f \in A[X]$ is indeed in A^{\times}. Suppose that $f \in A[X]^{\times}$, and that $f g=1$ for some $g \in A[X]$. Of course f and g cannot be 0 , so that we have well-defined $\operatorname{deg}(f), \operatorname{deg}(g) \geq 0$. Being A a domain, we have that $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$ (because the product of the leading coefficients is the leading coefficient of the product, as it cannot vanish). Hence $0=\operatorname{deg}(1)=\operatorname{deg}(f)+\operatorname{deg}(g)$, and the only possibility is that $\operatorname{deg}(f)=\operatorname{deg}(g)=0$. Hence $f, g \in A$, giving $f \in A^{\times}$.
4. Let K be a field, and consider the ideal I generated by X and Y in $K[X, Y]$. Show:

1. I is not principal;
2. I is maximal.

Solution:

1. By contradiction, suppose that $I=(P)$ for some $P \in K[X, Y]$. Then there must exist $Q, R \in K[X, Y]$ such that $X=P \cdot Q$ and $Y=P \cdot R$. Notice that both $K[X]$ and $K[Y]$ are integral domains, so that regarding $K[X, Y]$ as $K[X][Y]$ or as $K[Y][X]$ we have that both the degree in X and the degree in Y of a product of polynomials are the sum of the degrees of the polynomials. As P, Q, R cannot be zero, they have a well-defined degree. In particular, we have $0=$ $\operatorname{deg}_{Y}(X)=\operatorname{deg}_{Y}(P)+\operatorname{deg}_{Y}(Q)$, which implies $\operatorname{deg}_{Y}(P)=0$, and $0=\operatorname{deg}_{X}(Y)=$ $\operatorname{deg}_{X}(P)+\operatorname{deg}_{X}(R)$, which implies $\operatorname{deg}_{X}(P)=0$. Then $P \in K$, since it is constant in both variables. In particular, $P \in K^{\times}$, so that $1 \in(P)$ and $P=K[X, Y]$. This means in particular that for some $A, B \in K[X, Y]$ we can write $X \cdot A+Y \cdot B=1$, which is a contradiction (as evaluating the two sides of the equality at $X=Y=0$ we obtain $0=1$, which is not true in a field. Hence I is a not a principal ideal.
2. We can do this by proving that $K[X, Y] /(X, Y)$ is a field. Since we are adding to K two variables which then we set equal to zero (by quotienting over I), intuition suggests that $K[X, Y] /(X, Y) \cong K$, which is a field by hypothesis. This is true: consider the map

$$
\begin{aligned}
\phi: K[X, Y] & \rightarrow K \\
P(X, Y) & \mapsto P(0.0)
\end{aligned}
$$

It is a ring homomorphism (as it is the composition of evaluation maps $K[X][Y] \rightarrow$ $K[X] \rightarrow K)$, and it is clearly surjective, as every element in K is its own counterimage. We claim that $\operatorname{ker}(\phi)=(X, Y)$. The inclusion "?" is immediate. For the other inclusion, take $P \in \operatorname{ker}(\phi)$. Dividing P by X and its remainder by Y, we obtain a constant $c \in K[X, Y]$ and polynomials $A \in K[X, Y], B \in K[Y]$ such that $P=X A+Y B+c$, and then evaluating the two sides at $(0,0)$ we obtain $0=P(0,0)=c$, so that $P=X A+Y B \in(X, Y)$.
To conclude, we apply First Isomorphism Theorem for rings, which gives an isomorphism $K[X, Y] /(X, Y) \cong K$ as desired.

