Exercise sheet 9

The content of the marked exercises (*) should be known for the exam.

1. (*) Let K be a field.
2. Suppose that $P \in K[X]$ is a non-zero polynomial of degree d. Prove that P has at most d roots in K. [Hint: Exercise 2.3 from Exercise sheet 8].
3. Is the previous point also true if K is just supposed to be a division ring? [Hint: Exercise 1 from Exercise sheet 6].
4. Now suppose that K is an infinite field, and that $P \in K[X]$ is such that $P(\alpha)=0$ for every $\alpha \in K$. Prove: $P=0$ in $K[X]$.
5. Still supposing that K is an infinite field, show that if $P \in K\left[X_{1}, \ldots, X_{n}\right]$ is such that for every $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in K^{n}$ one has $P\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0$, then $P=0$ in $K\left[X_{1}, \ldots, X_{n}\right]$.
6. Let $p \in \mathbb{Z}$ be a positive prime number.
7. Prove that there exists a unique ring map $\mathbb{Z}[X] \rightarrow(\mathbb{Z} / p \mathbb{Z})[X]$ sending $X \mapsto X$, and that it is surjective. For $f \in \mathbb{Z}[X]$, we denote by \bar{f} its image via this map.
8. Let $f=\sum_{i=0}^{n} a_{i} X^{i} \in \mathbb{Z}[X]$ be such that $p \mid a_{i}$ for $i \in\{0, \ldots, n-1\}$ and $p \nmid a_{n}$. Prove that \bar{f} is a monomial in $\mathbb{Z} / p \mathbb{Z}[X]$, and deduce that if $f=g h$ in $\mathbb{Z}[X]$ with g and h non-constant polynomials, then $p^{2} \mid a_{0}[$ Hint: $\mathbb{Z} / p \mathbb{Z}$ is a field, hence $\mathbb{Z} / p \mathbb{Z}[X]$ is a principal ideal domain].
9. Conclude: if $f=\sum_{i=0}^{n} a_{i} X^{i} \in \mathbb{Z}[X]$ is such that $p^{2} \nmid a_{0}, p \nmid a_{n}, p \mid a_{i}$ for $i \in$ $\{0, \ldots, n-1\}$ and the coefficients a_{0}, \ldots, a_{n} are coprime, then f is an irreducible polynomial in $\mathbb{Z}[X]$. (This is known as Eisenstein's Criterion).
10. For $n \in \mathbb{Z}_{>1}$, we denote by W_{n} the set of primitive n-th roots of unity, and define the n-th cyclotomic polynomial

$$
\Phi_{n}(t):=\prod_{\zeta \in W_{n}}(X-\zeta) \in \mathbb{C}[X] .
$$

For $n=p$ a prime number, show that $\Phi_{p}(X) \in \mathbb{Z}[X]$, and that it is irreducible over $\mathbb{Z}[X]$. [Hint: First, find $(X-1) \Phi_{p}(X)$. Then take also in account the polynomial $\left.Q(X)=\phi_{p}(X+1)\right]$
3. Let $R=\mathbb{Z}[i \sqrt{5}]=\{a+b i \sqrt{5} \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$.

1. Show that R is a ring, and determine R^{\times}. [Hint: Suppose that $\alpha \in R^{\times}$. What can we say about $|\alpha|^{2}$?]
2. Show that $2 \cdot 3=(1+i \sqrt{5}) \cdot(1-i \sqrt{5})$ are two non-equivalent factorizations of $6 \in R$, so that R is not a UFD.
3. Prove that the ideal $\mathfrak{m}=(2,1+i \sqrt{5}) \subseteq R$ is maximal but not principal. [Hint: Compute R / \mathfrak{m} and deduce that \mathfrak{m} is maximal. Working by contradiction and using irreducibility of 2 , you can prove that \mathfrak{m} is not principal.]

Due to: 20 November 2014, 3 pm .

