Algebra I

D-MATH Prof. Emmanuel Kowalski

Exercise sheet 9

The content of the marked exercises (*) should be known for the exam.

- 1. (*) Let K be a field.
 - 1. Suppose that $P \in K[X]$ is a non-zero polynomial of degree d. Prove that P has at most d roots in K. [*Hint:* Exercise 2.3 from Exercise sheet 8].
 - 2. Is the previous point also true if K is just supposed to be a division ring? [*Hint:* Exercise 1 from Exercise sheet 6].
 - 3. Now suppose that K is an infinite field, and that $P \in K[X]$ is such that $P(\alpha) = 0$ for every $\alpha \in K$. Prove: P = 0 in K[X].
 - 4. Still supposing that K is an infinite field, show that if $P \in K[X_1, \ldots, X_n]$ is such that for every $(\alpha_1, \ldots, \alpha_n) \in K^n$ one has $P(\alpha_1, \ldots, \alpha_n) = 0$, then P = 0 in $K[X_1, \ldots, X_n]$.
- **2.** Let $p \in \mathbb{Z}$ be a positive prime number.
 - 1. Prove that there exists a unique ring map $\mathbb{Z}[X] \to (\mathbb{Z}/p\mathbb{Z})[X]$ sending $X \mapsto X$, and that it is surjective. For $f \in \mathbb{Z}[X]$, we denote by \overline{f} its image via this map.
 - 2. Let $f = \sum_{i=0}^{n} a_i X^i \in \mathbb{Z}[X]$ be such that $p|a_i$ for $i \in \{0, \ldots, n-1\}$ and $p \nmid a_n$. Prove that \overline{f} is a monomial in $\mathbb{Z}/p\mathbb{Z}[X]$, and deduce that if f = gh in $\mathbb{Z}[X]$ with g and h non-constant polynomials, then $p^2|a_0$ [Hint: $\mathbb{Z}/p\mathbb{Z}$ is a field, hence $\mathbb{Z}/p\mathbb{Z}[X]$ is a principal ideal domain].
 - 3. Conclude: if $f = \sum_{i=0}^{n} a_i X^i \in \mathbb{Z}[X]$ is such that $p^2 \nmid a_0, p \nmid a_n, p \mid a_i$ for $i \in \{0, \ldots, n-1\}$ and the coefficients a_0, \ldots, a_n are coprime, then f is an irreducible polynomial in $\mathbb{Z}[X]$. (This is known as Eisenstein's Criterion).
 - 4. For $n \in \mathbb{Z}_{>1}$, we denote by W_n the set of primitive *n*-th roots of unity, and define the *n*-th cyclotomic polynomial

$$\Phi_n(t) := \prod_{\zeta \in W_n} (X - \zeta) \in \mathbb{C}[X].$$

For n = p a prime number, show that $\Phi_p(X) \in \mathbb{Z}[X]$, and that it is irreducible over $\mathbb{Z}[X]$. [*Hint:* First, find $(X-1)\Phi_p(X)$. Then take also in account the polynomial $Q(X) = \phi_p(X+1)$]

- **3.** Let $R = \mathbb{Z}[i\sqrt{5}] = \{a + bi\sqrt{5} | a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$.
 - 1. Show that R is a ring, and determine R^{\times} . [*Hint:* Suppose that $\alpha \in R^{\times}$. What can we say about $|\alpha|^2$?]
 - 2. Show that $2 \cdot 3 = (1 + i\sqrt{5}) \cdot (1 i\sqrt{5})$ are two non-equivalent factorizations of $6 \in R$, so that R is not a UFD.
 - 3. Prove that the ideal $\mathfrak{m} = (2, 1 + i\sqrt{5}) \subseteq R$ is maximal but not principal. [*Hint:* Compute R/\mathfrak{m} and deduce that \mathfrak{m} is maximal. Working by contradiction and using irreducibility of 2, you can prove that \mathfrak{m} is not principal.]

Due to: 20 November 2014, 3 pm.