## Solutions of exercise sheet 9

The content of the marked exercises (*) should be known for the exam.

1. (*) Let $K$ be a field.
2. Suppose that $P \in K[X]$ is a non-zero polynomial of degree $d$. Prove that $P$ has at most $d$ roots in $K$. [Hint: Exercise 2.3 from Exercise sheet 8].
3. Is the previous point also true if $K$ is just supposed to be a division ring? [Hint: Exercise 1 from Exercise sheet 6].
4. Now suppose that $K$ is an infinite field, and that $P \in K[X]$ is such that $P(\alpha)=0$ for every $\alpha \in K$. Prove: $P=0$ in $K[X]$.
5. Still supposing that $K$ is an infinite field, show that if $P \in K\left[X_{1}, \ldots, X_{n}\right]$ is such that for every $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in K^{n}$ one has $P\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0$, then $P=0$ in $K\left[X_{1}, \ldots, X_{n}\right]$.

## Solution:

1. Let $V(P) \subseteq K$ be the set of roots of the polynomial $P \in K[X]$. For every finite collection of distinct roots $\alpha_{1}, \ldots, \alpha_{k} \in V(P)$, we have that $\left(X-\alpha_{i}\right) \mid P$. Since the polynomials $X-\alpha_{i}$ have degree 1 , and $K$ is a field, we have that the only possible decompositions of $X-\alpha_{i}$ are of the form $c \cdot q(X)$ for some polynomial $q(X)$ of degree 1 and constant $c \in K \backslash\{0\}=K^{\times}$. Hence the polynomials $X-\alpha_{i}$ are distinct irreducible elements in $K[X]$ which all divide $P$. We claim that then

$$
\prod_{i=1}^{k}\left(X-\alpha_{i}\right) \mid P \quad(*)
$$

and being $K$ a field we have $k=\operatorname{deg}\left(\prod_{i=1}^{k}\left(X-\alpha_{i}\right)\right) \leq \operatorname{deg} P=d$. Hence all finite subsets of $V(P)$ have cardinality $\leq d$, implying that $|V(P)| \leq d$, that is, $P$ has at most $d$ roots.
We are only left to prove the claim $(*)$. This is true more in general for any UFD $A$ (and $A=K[X]$ is a UFD): if $\gamma_{1}, \ldots, \gamma_{k}$ are distinct irreducible elements dividing $f \in A$, then their product divides $f$ as well. To prove it, we work by induction on $k$, the case $k=1$ being trivial. So we can suppose that $\gamma_{1} \cdots \cdots \gamma_{n-1} \mid f$, and write $f=\gamma_{1} \cdots \cdots \gamma_{n-1} \cdot g$ for some $g \in A$. Decomposing $g$ into irreducible and using uniqueness of decomposition into irreducible, we have that $\gamma_{n} \mid g$, and this gives our claim.
2. No, it is not true. For example, the polynomial $X^{2}+1 \in \mathbb{H}[X]$ vanishes on $\dot{i}, \dot{j}$ and $\mathbb{k}$ (see Exercise 1 from Exercise sheet 6).
3. By contradiction, assume that $P \neq 0$. Then by Point 1 we have that $P$ has less than $\operatorname{deg}(P)$ roots. Since every $\alpha \in K$ is a root, we get $\infty=|K| \leq \operatorname{deg}(P)<\infty$, contradiction.
4. We prove this by induction on $n$, the case $n=1$ being proved in previous point. So we can prove the statement by supposing that it holds for $n-1$. For $d=\operatorname{deg}_{X_{n}}(P)$ and some $a_{i} \in K\left[X_{1}, \ldots, X_{n-1}\right]$, we can write

$$
P\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=0}^{d} a_{i}\left(X_{1}, \ldots, X_{n-1}\right) X_{n}^{d}
$$

Then for every $\left(\alpha_{1}, \ldots, \alpha_{n-1}\right) \in K^{n-1}$ we define

$$
q_{\alpha_{1}, \ldots, \alpha_{n-1}}(Y)=P\left(\alpha_{1}, \ldots, \alpha_{n-1}, Y\right)=\sum_{i=0}^{d} a_{i}\left(\alpha_{1}, \ldots, \alpha_{n-1}\right) Y^{d} \in K[Y],
$$

and we observe that by construction $q_{\alpha_{1}, \ldots, \alpha_{n-1}} \in K[Y]$ vanishes on all elements in $K$, so that by the previous point we have $q_{\alpha_{1}, \ldots, \alpha_{n-1}}(Y)=0$, meaning that for all $i=0, \ldots, d$ and $\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)$ we have $a_{i}\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)=0$, so that inductive hypothesis (applied on all the $a_{i}$ 's) gives $a_{i}=0$, which implies $P=0$.
2. Let $p \in \mathbb{Z}$ be a positive prime number.

1. Prove that there exists a unique ring map $\mathbb{Z}[X] \rightarrow(\mathbb{Z} / p \mathbb{Z})[X]$ sending $X \mapsto X$, and that it is surjective. For $f \in \mathbb{Z}[X]$, we denote by $\bar{f}$ its image via this map.
2. Let $f=\sum_{i=0}^{n} a_{i} X^{i} \in \mathbb{Z}[X]$ be such that $p \mid a_{i}$ for $i \in\{0, \ldots, n-1\}$ and $p \nmid a_{n}$. Prove that $\bar{f}$ is a monomial in $\mathbb{Z} / p \mathbb{Z}[X]$, and deduce that if $f=g h$ in $\mathbb{Z}[X]$ with $g$ and $h$ non-constant polynomials, then $p^{2} \mid a_{0}$ [Hint: $\mathbb{Z} / p \mathbb{Z}$ is a field, hence $\mathbb{Z} / p \mathbb{Z}[X]$ is a principal ideal domain].
3. Conclude: if $f=\sum_{i=0}^{n} a_{i} X^{i} \in \mathbb{Z}[X]$ is such that $p^{2} \nmid a_{0}, p \nmid a_{n}, p \mid a_{i}$ for $i \in$ $\{0, \ldots, n-1\}$ and the coefficients $a_{0}, \ldots, a_{n}$ are coprime, then $f$ is an irreducible polynomial in $\mathbb{Z}[X]$. (This is known as Eisenstein's Criterion).
4. For $n \in \mathbb{Z}_{>1}$, we denote by $W_{n}$ the set of primitive $n$-th roots of unity, and define the $n$-th cyclotomic polynomial

$$
\Phi_{n}(t):=\prod_{\zeta \in W_{n}}(X-\zeta) \in \mathbb{C}[X] .
$$

For $n=p$ a prime number, show that $\Phi_{p}(X) \in \mathbb{Z}[X]$, and that it is irreducible over $\mathbb{Z}[X]$. [Hint: First, find $(X-1) \Phi_{p}(X)$. Then take also in account the polynomial $\left.Q(X)=\phi_{p}(X+1)\right]$

## Solution:

1. Let $B=\mathbb{Z} / p \mathbb{Z}[X]$. Applying Exercise 1 from Exercise sheet 8 (in particular, parts 4 and 8) with $A=\mathbb{Z}$, we have that for every $b \in B$ and ring homomorphism $s: \mathbb{Z} \rightarrow B$ there exists a unique ring homomorphism $\lambda: \mathbb{Z}[X] \rightarrow B$ such that $X \mapsto b$ and $\mathbb{Z} \ni m \mapsto s(m)$. Of course, this association $(b, s) \mapsto \lambda$ gives all the ring homomorphisms $\lambda: \mathbb{Z}[X] \rightarrow B$, as from $\lambda$ we can recover $b=\lambda(X)$ and $s=\left.\lambda\right|_{\mathbb{Z}}$. But since $(\mathbb{Z},+)$ is generated as abelian group by $1_{\mathbb{Z}}$, which is mapped to $1_{B}$ by any ring map $s: \mathbb{Z} \rightarrow B$, there exists a unique ring homomorphism $\mathbb{Z} \rightarrow B$, and hence a unique ring homomorphism $\gamma: \mathbb{Z}[X] \rightarrow B$ sending $X \mapsto X$.
More explicitly, we see that for $m \in \mathbb{Z}$ we have $\gamma(m)=\bar{m}:=m+p \mathbb{Z}$, so that $\gamma$ just reduces the coefficients of $f \in \mathbb{Z}[X]$ modulo $p$.
2. If $f=\sum_{i=0}^{n} a_{i} X^{i} \in \mathbb{Z}[X]$ is such that $p \mid a_{i}$ for $i \in\{0, \ldots, n-1\}$ and $p \nmid a_{n}$, then $\bar{f}=\bar{a}_{n} X^{n}$ is a monomial, and as $\gamma$ is a ring homomorphism, we have that $f=g h$ implies $\bar{f}=\bar{g} \bar{h}$. Since $B=\mathbb{Z} / p \mathbb{Z}[X]$ is a UFD (as it is a principal ideal domain) where $X \in B$ is an irreducible element (by reasoning on the degrees of possible divisors), we have that $\bar{g}, \bar{h}$ are monomials of some positive (by hypothesis) degrees $d$ and $e$ such that $d+e=n$. Then $p$ divides all coefficients of $g$ and $h$ but the leading ones. Since the constant terms of $f$ is the product of the constant terms of $g$ and $h$, which are both divisible by $p$, we get that $p^{2} \mid a_{0}$.
3. This follows immediately by assuming by contradiction that $f$ is not irreducible, meaning that $f=g h$ for some polynomials $g, h$ which are not invertible. The two polynomials $g$ and $h$ need then to have positive degree, because if one of them were a non-invertible constant which would divide all the coefficients of $f$, contradiction with the fact that they are coprime. Then $g, h$ have positive degree, and the previous point gives $p^{2} \mid a_{0}$, contradiction.
4. If $\zeta \in \mathbb{C}$ is a $p$-th root of unity, then $\zeta \in \mathbb{C}^{\times}$, and $|\zeta|^{p}=1$ (by Exercise 2.1 of Exercise sheet 2), so that $|\zeta|=1$. Then we can write $\zeta=\exp (\vartheta i)=\cos (\vartheta)+$ $i \sin (\vartheta)$ for some $\vartheta \in \mathbb{R}$, and get

$$
1=\zeta^{p}=\exp (p \vartheta i)
$$

which implies $\vartheta=2 k \pi / p$ for some $k \in \mathbb{Z}$. Notice that increasing $k$ by $p$, the resulting $\zeta$ does not vary. Moreover, if $\zeta$ is a non-primitive root of unity, then it has as order (in $\mathbb{C}^{\times}$) a proper divisor of $p$, which gives $\zeta=1$. So we have

$$
W_{p}=\{\exp (2 k \pi / p): k=1, \ldots, p-1\}
$$

and $(X-1) \cdot \phi_{p}(X)=\prod_{k=0}^{n}(X-\exp (2 k \pi / p))$, a polynomial of degree $p$ whose roots are all the $p$-th roots of unity. Since they are roots of $X^{p}-1$, by applying Factorization Lemma as we did in Exercise 1.1 and using the fact that $\mathbb{C}[X]$ is a UFD, we can conclude that the two polynomials are the same up to a multiplicative constant, which has to be 1 (by comparing the leading coefficients). Hence

$$
\phi_{p}(X)=\frac{X^{p}-1}{X-1}=X^{p-1}+X^{p-2}+\ldots+X+1 \in \mathbb{Z}[X]
$$

Defining $Q(X):=\phi_{p}(X+1)$, we have that $Q$ is irreducible if and only if $\phi_{p}$ is
(since their factorizations are in a degree-preserving correspondence). But

$$
Q(X)=\phi_{p}(X+1)=\frac{(X+1)^{p}-1}{X+1-1}=\sum_{i=1}^{p}\binom{p}{i} X^{i-1}
$$

and we claim that $Q$ satisfies the conditions to apply Eisenstein's Criterion. Then $Q$ is irreducible over $\mathbb{Z}[X]$, and so is $\phi_{p}(X)$.
To prove the claim on $Q(X)$, write $a_{k}=\binom{p}{k+1}$, so that $Q=\sum_{k=0}^{p-1} a_{k} X^{k}$. Then $a_{p-1}=\binom{p}{p}=1$, so that $p \nmid a_{p-1}$ and the coefficients are all coprime. For $k=$ $0, \ldots, p-2$, we have $1 \leq k+1 \leq p-1$, and we shall prove that in this case $p \left\lvert\,\binom{ p}{k+1}\right.$. Indeed, one has

$$
\binom{p}{k+1}=\frac{p \cdots(p-k)}{(k+1) \cdots 1}
$$

and $p$ appears as a factor only in the numerator, proving that this binomial coefficient is divisible by $p$. Finally, we have $a_{0}=\binom{p}{1}=p$, so that $p^{2} \nmid a_{0}$ and we have all the required conditions.
3. Let $R=\mathbb{Z}[i \sqrt{5}]=\{a+b i \sqrt{5} \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$.

1. Show that $R$ is a ring, and determine $R^{\times}$. [Hint: Suppose that $\alpha \in R^{\times}$. What can we say about $|\alpha|^{2}$ ?]
2. Show that $2 \cdot 3=(1+i \sqrt{5}) \cdot(1-i \sqrt{5})$ are two non-equivalent factorizations of $6 \in R$, so that $R$ is not a UFD.
3. Prove that the ideal $\mathfrak{m}=(2,1+i \sqrt{5}) \subseteq R$ is maximal but not principal. [Hint: Compute $R / \mathfrak{m}$ and deduce that $\mathfrak{m}$ is maximal. Working by contradiction and using irreducibility of 2 , you can prove that $\mathfrak{m}$ is not principal.]

## Solution:

1. We define operations on $R$ as in $\mathbb{C}$, and we want to check that $R$ is a subring of $\mathbb{C}$. This is easily done by noticing that $0,1 \in R$, and that for $a, b, c, d \in \mathbb{Z}$ one has

$$
(a+b i \sqrt{5})-(c+d i \sqrt{5})=(a-c)+(b-d) i \sqrt{5} \in R
$$

and

$$
(a+b i \sqrt{5}) \cdot(c+d i \sqrt{5})=(a c-5 b d)+(a d+b c) i \sqrt{5} \in R
$$

so that $R$ is closed by multiplication, sum, and taking inverses. Let $\alpha=a+b i \sqrt{5} \in$ $R$. Then $|\alpha|^{2}=\alpha \bar{\alpha}=a^{2}+5 b^{2} \in \mathbb{Z}_{\geq 0}$. Then if $\alpha \in R^{\times}$, and $\alpha \beta=1$, we get $1=1 \cdot \overline{1}=\alpha \beta \bar{\alpha} \bar{\beta}=|\alpha|^{2}|\beta|^{2}$, and $|\alpha|^{2}$ can only be equal to 1 (as also $|\beta|^{2} \in \mathbb{Z}_{\geq 0}$ ). Then $5 b^{2} \leq a^{2}+5 b^{2}=1$ implies that $b=0$ and $a= \pm 1$, hence $R^{\times}=\{ \pm 1\}$.
2. Let us first prove that 2 is irreducible. Suppose that $2=\alpha \beta$ for $\alpha, \beta \in R$. Then we have $4=|\alpha|^{2}|\beta|^{2}$, and $|\alpha|^{2},|\beta|^{2} \in \mathbb{Z}_{\geq 0}$. Moreover, we have seen before in proving the previous point that if $|\alpha|^{2}=1$ we get $\alpha= \pm 1 \in R^{\times}$, and the same holds for $\beta$. Hence the only possibility for the factorization $\alpha \beta=2$ to be proper is that $|\alpha|=|\beta|=2$, which is not possible since $5 b^{2} \leq a^{2}+5 b^{2}=2$ implies $b=0$, and $a^{2}=2$ which cannot hold. Then 2 is an irreducible element of $R$.
As 2 clearly does not divide $1 \pm i \sqrt{5}$ (as $(1 \pm i \sqrt{5}) / 2 \in \mathbb{Q}[i \sqrt{5}]$ has non-integer coefficients, so that it cannot lie in $R$ because $1, i \sqrt{5}$ are $\mathbb{Q}$-linear independent elements in $\mathbb{C}$ ), we get that the two given factorizations of 6 cannot be equivalent, so that $R$ is not a UFD.
3. Let $A=R / \mathfrak{m}$. Notice that $i \sqrt{5}+\mathfrak{m}=-1+\mathfrak{m}=1+\mathfrak{m}$, so that $a+b i \sqrt{5}+\mathfrak{m}=$ $a+b+\mathfrak{m}$. This suggests that $A \cong \mathbb{Z} / 2 \mathbb{Z}$ via

$$
\begin{aligned}
\phi: A=\frac{R}{\mathfrak{m}} & \rightarrow \frac{\mathbb{Z}}{2 \mathbb{Z}} \\
a+b i \sqrt{5}+\mathfrak{m} & \mapsto a+b+2 \mathbb{Z} .
\end{aligned}
$$

Let us prove that the above is indeed a ring isomorphism. First, notice that we have

$$
\begin{aligned}
& a+b i \sqrt{5} \mathfrak{m}=a^{\prime}+b^{\prime} i \sqrt{5} \mathfrak{m} \Longleftrightarrow\left(a-a^{\prime}\right)-\left(b-b^{\prime}\right) \in 2 \mathbb{Z} \Longleftrightarrow \\
& \Longleftrightarrow\left(a-a^{\prime}\right)+\left(b-b^{\prime}\right) \in 2 \mathbb{Z} \Longleftrightarrow(a-b)-\left(a^{\prime}-b^{\prime}\right) \in 2 \mathbb{Z},
\end{aligned}
$$

which implies that $\phi$ is a well defined injective map. It is clear that $\phi$ is additive, and that $\phi(0)=0, \phi(1)=1$, so that $\phi$ is surjective. Finally, we check multiplicativity:

$$
\begin{aligned}
\phi((a+b i \sqrt{5}+\mathfrak{m}) & (c+d i \sqrt{5}+\mathfrak{m}))=\phi((a c-5 b d)+(a d+b c) i \sqrt{5}+\mathfrak{m})= \\
& =a c+b d+a d+b c+2 \mathbb{Z}=(a+b+2 \mathbb{Z})(c+d+2 \mathbb{Z}) \\
& =\phi(a+b i \sqrt{5}+\mathfrak{m}) \cdot \phi(c+d i \sqrt{5}+\mathfrak{m}) .
\end{aligned}
$$

Then $R / \mathfrak{m}$ is isomorphic to the field $\mathbb{Z} / 2 \mathbb{Z}$, implying that $\mathfrak{m}$ is maximal in $R$.
Now we prove by contradiction that $\mathfrak{m}$ is not principal. Suppose by contradiction that $\mathfrak{m}=(\gamma)$. We have $\gamma \notin R^{\times}$(else it would generate the unit ideal $R$ ), and that $\gamma \mid 2$, so that being 2 irreducible we have $\gamma=2 \cdot u$, for some $u \in R^{\times}$(explicitly, $\gamma= \pm 2$ ), so that $(2,1+i \sqrt{5})=(\gamma)=(2)$. Then $2 \mid 1+i \sqrt{5}$, which is false. Contradiction. Hence $\mathfrak{m}$ is not a principal ideal.

