Exercise Sheet 10

1. (Killing fields on \mathbb{R}^3 , continuation) Given $v \in \mathbb{R}^3$, recall the two vector fields defined in exercise sheet 9, exercise 5

 $T_v(x) = v, \quad R_w(x) = w \times x, \quad x \in \mathbb{R}^3.$

- (a) Describe the flows $\Phi_t^{T_v}$, $\Phi_t^{R_v}$ geometrically.
- (b) Determine by geometric reasoning conditions on v, w such that the flows $\Phi_t^{T_v}, \Phi_t^{R_w}$ commute. (We say that two diffeomorphisms ϕ, ψ commute if $\phi \circ \psi = \psi \circ \phi$.)
- (c) Determine by computation conditions on v, w such that the Lie brackets $[T_v, R_w]$ vanishes.
- **2.** Let X, Y, Z be smooth vector fields. Show that for any diffeomorphism ϕ ,

$$\phi^*[Y,Z] = [\phi^*Y,\phi^*Z].$$

- **3.** Let G be a Lie group, $e \in G$ the identity element. We call a vector field X on G left-invariant if $L_a^*(X) = X$ for all $a \in G$. Let $\mathcal{G} := \{$ left invariant vector fields on $G \}$.
 - (a) For each $\tilde{X} \in T_e G$, there is a unique left-invariant vector field X with $X(e) = \tilde{X}$. (Thus \mathcal{G} may be identified with the tangent space of G at the identity.)
 - (b) Prove that a left-invariant vector field is smooth.
 - (c) Prove that if X, Y are left-invariant, then so is [X, Y]. Prove that \mathcal{G} forms a Lie subalgebra of the Lie algebra $C^{\infty}(TG)$. (\mathcal{G} is called the *Lie algebra of G*. It is a remarkable fact that G can be reconstructed in a neighborhood of the identity from the finite, algebraic information contained in \mathcal{G} .)
- 4. (a) Let $GL(n, \mathbb{R})$ be the invertible $n \times n$ real matrices, with Lie algebra $\mathcal{GL}(n, \mathbb{R}) \cong T_{Id}GL(n, \mathbb{R}) = M^{n \times n}(\mathbb{R})$. Using the above exercise, for $A \in T_{Id}GL(n, \mathbb{R})$ find explicitly the unique left-invariant vector field X_A on $GL(n, \mathbb{R})$ such that

$$X_A\left(Id\right) = A.$$

(b) Show that the Lie bracket operation $[\cdot, \cdot]$ on $\mathcal{GL}(n, \mathbb{R})$ coincides (as a differential operator) with the anticommutator of matrices AB - BA, i.e.

$$[X_A, X_B] = X_{(AB-BA)}.$$

5. Compute the Lie algebras of SO(3) and S^3 independently and compare.

Due on Wednesday December 10 (resp. Friday December 12)