Exercise Sheet 12

1. (a) Let $a(t)=a_{X}(t)$ be the integral curve of X starting at the identity. Show that $a(t)$ is a 1-parameter subgroup, i.e. $a(s+t)=a(s) a(t)$.
(b) Show that a is defined for all t. It follows that the flow of a left-invariant vector field is complete.
(c) Verify $a_{s X}(t)=a_{X}(s t)$.
(d) The exponential map (in the sense of Lie groups)

$$
\exp : T_{e} G \rightarrow G
$$

is defined by

$$
\exp (X):=a_{X}(1)
$$

Show that exp is defined everywhere on $T_{e} G$ and that

$$
\exp (s X) \exp (t X)=\exp ((s+t) X)
$$

Warning: this does not always coincide with the exponential map of a Riemannian metric!
(e) Verify that for matrix groups, the above definition of $\exp (X)$ coincides with $\sum_{k=0}^{\infty} X^{k} / k!$ (see supplementary problem \#16).
2. (a) Verify that for any real (or complex) square matrix A, $\operatorname{det}(\exp (A))=\exp (\operatorname{tr}(A))$.
(b) Verify that $\operatorname{sl}(n, \mathbb{R}):=\left\{A \in \mathbb{R}^{n \times n} \mid \operatorname{tr}(A)=0\right\}$ is the Lie algebra $T_{I} S L(n, \mathbb{R})$ of $S L(n, \mathbb{R})$.
(c) Check that $S L(2, \mathbb{R})$ is diffeomorphic to the solid torus $S^{1} \times B^{2}$, where B^{2} is the open 2-dimensional disk.
(d) Show that the exponential map $\exp : \operatorname{sl}(2, \mathbb{R}) \rightarrow S L(2, \mathbb{R})$ is not surjective.

Sketch: First observe that the (complex) eigenvalues μ, μ^{-1} of a matrix $B \in$ $S L(2, \mathbb{R})$ satisfy $\mu \in \mathbb{R}$ or $|\mu|=1$. If they are real, then they are either both positive or both negative.

Claim: if the eigenvalues of A are both negative, then B cannot be written as $\exp (A)$ for any $A \in \operatorname{sl}(2, \mathbb{R})$.

To prove this, calculate the form of $\exp (A)$ when $\operatorname{tr}(A)=0$. By the CayleyHamilton theore, $A^{2}=-\operatorname{det}(A) I$. Now split into cases according to the sign of
$\operatorname{det}(A)$. If $\operatorname{det}(A)=0$, then $A^{2}=0$ and A is similar to the matrix $\left(\begin{array}{cc}0 & \lambda \\ 0 & 0\end{array}\right)$. If $\operatorname{det}(A)<0$, then the (complex) eigenvalues $\lambda,-\lambda$ of A satisfy $-\lambda^{2}<0$, so λ is real. If $\operatorname{det}(A)>0$, then $\lambda,-\lambda$ satisfy $-\lambda^{2}>0$, so $\lambda=i \theta$ is pure imaginary. In all three cases, we may compute the form of $\exp (A)$ explicitly, and we find that the case where both eigenvalues of $\exp (A)$ are negative is impossible.
(e) For comparison, recall that the exponential map of $S O(n)$ is surjective. (See Exercise Sheet 5 problem 2)

