Exercise Sheet 4

1. (Topology practice) A topological space (X, \mathcal{T}) is called *compact* if every open cover of X contains a finite subcover, i.e. if for every family $\{U_{\lambda}\}_{\lambda} \subset \mathcal{T}$ with $X = \bigcup_{\lambda} U_{\lambda}$ there are finitely many indices $\lambda_1, \ldots, \lambda_n$ such that $X = \bigcup_{i=1}^{i=n} U_{\lambda_i}$.

Prove the following properties, where X, Y are topological spaces:

a) If (X, \mathcal{T}) is a topological space and $Y \subseteq X$ then

$$\mathcal{T}|_Y := \{ U \cap Y \mid U \in \mathcal{T} \}$$

is a topology on Y, called the subspace topology (or the induced topology) on Y.

- b) If X is a subspace of Y, X is compact (with the induced topology), and Y is Hausdorff, then X is closed in Y.
- c) If X is closed in Y and Y is compact, then X (with the subspace topology) is compact.
- d) If $f: X \to Y$ is continuous and X is compact, then f(X) is compact.
- e) If X, Y are compact, then $X \times Y$ is compact (with the product topology).
- f) A closed interval $[a, b] \subset \mathbb{R}$ is compact.
- g) A subset of \mathbb{R}^n is compact if and only if it is closed and bounded.
- 2. A topological sheaf is a triple (f, X, Y) such that
 - i) X, Y are topological space and $f : X \to Y$ is continuous,
 - ii) f is surjective,
 - iii) f is a local homeomorphism, i.e. for any $x \in X$ there exists an open neighborhood U of x such that f(U) is open in Y and $f|_U : U \to f(U)$ is a homeomorphism with respect to the induced topologies.

Consider the following example. Let $\mathbb{R}_0 := \mathbb{R} \setminus \{0\}$. Set $Y_1 := \mathbb{R}, X_1 := \mathbb{R}_0 \cup \{0^+, 0^-\}$. Let $f_1 : X_1 \to Y_1$, defined by

$$f_1(x) := \begin{cases} x, & \text{if } x \in \mathbb{R}_0, \\ 0 & \text{if } x \in \{0^+, 0^-\}. \end{cases}$$

Let \mathcal{T}_{X_1} be the topology given by

$$\mathcal{T}_{X_1} = \{ U \subseteq X_1 \mid f_1(U) \text{ is open in } Y_1 \}$$

Observe that

- a) f_1 is a topological sheaf and the maps $\phi_{\pm} := f_1|_{\mathbb{R}_0 \cup \{0^{\pm}\}}$ define a smooth atlas on X_1 , but the induced topology is not Hausdorff.
- b) More generally, any topological sheaf $f : X \to \mathbb{R}^n$ automatically acquires a smooth atlas consisting of its local homeomorphisms onto open subsets of \mathbb{R}^n .
- c)* The sheaf of germs of holomorphic functions over \mathbb{C} is Hausdorff and is a smooth manifold. The sheaf of germs of smooth real-valued functions over \mathbb{R} is an extreme example of "non-Hausdorff manifold".
- 3. Consider \mathbb{R} with its usual differentiable structure, induced by the chart $\varphi : \mathbb{R} \to \mathbb{R}$, $\varphi(x) = x$, and consider also the differentiable structure induced by the chart $\psi : \mathbb{R} \to \mathbb{R}$, $\psi(x) = x^3$.

Show that the two differentiable structures are not equal, but that nevertheless the two differentiable manifolds thus defined are diffeomorphic.

- 4. (*Review of Quaternions*) Let Q denote the vector space \mathbb{R}^4 with basis $\{1, i, j, k\}$ and multiplication subject to the laws $i^2 = j^2 = k^2 = -1$, ij = -ji = k, jk = -kj = i, ki = -ik = j. (These make Q into an algebra.)
 - a) Show that every non-zero element $V \in Q$ is invertible.
 - b) Show that |VW| = |V||W| for $V, W \in Q$.
 - c) Show that $S^3 := \{V \in Q : |V| = 1\}$ has the structure of a group. (Hint: Set u = a + bi + cj + dk. It is useful to define $\bar{u} := a bi cj dk$ and prove $\bar{u}u = |u|^2$.)
- 5. (Klein bottle) Let Γ be the group of isometries of \mathbb{R}^2 generated by the maps

$$(x, y) \mapsto (x + 1, -y)$$
$$(x, y) \mapsto (x, y + 1).$$

- a) Describe \mathbb{R}^2/Γ geometrically.
- b) Give \mathbb{R}^2/Γ a smooth structure in the "obvious way" and check that the projection $\pi : \mathbb{R}^2 \to \mathbb{R}^2/\Gamma$ is smooth.
- b) How many pointwise linearly independent vector fields can **you** find on \mathbb{R}^2/Γ ? (Hint: a vector field on \mathbb{R}^2/Γ can be lifted up to one on \mathbb{R}^2 that is invariant under the action of the group Γ .)

Due on Wednesday October 22(resp. Friday October 25)