Exercise Sheet 5

1 (Quaternions) A Lie group is a smooth manifold endowed with a group structure such that the group operations $(g, h) \mapsto g h$ and $g \mapsto g^{-1}$ are smooth.
a) Show that $S^{3}:=\{V \in Q:|V|=1\}$ is a Lie group.
b) Construct smooth vector fields X, Y, Z on S^{3} such that $X(p), Y(p), Z(p)$ are independent for each p, and thereby prove $T S^{3} \cong S^{3} \times \mathbb{R}^{3}$.
Hint: Consider, for each $V \in S^{3}$, the left-multiplication map $L_{V}: S^{3} \rightarrow S^{3}$, $W \mapsto V W$ and compute $\left(d L_{V}\right)_{1}: T_{1} S^{3} \rightarrow T_{V} S^{3}$ on the basis i, j and k.
2. Let $O(n):=\left\{A \in \mathbb{R}^{n \times n} \mid A^{T} A=I\right\}$ be the group of ortogonal matrices. (N.B. $\mathbb{K}^{p \times q}$ is the set of all $p \times q$ matrices with entries in \mathbb{K}.)
a) Compute a typical tangent vector to $O(n)$ at I as follows. Let $A(t)$ be a smooth curve in $\mathbb{R}^{n \times n}$ with $A(0)=I, A(t) \in O(n)$. Find an equation satisfied by $B:=$ $d A(0) / d t$.
b) Conversely, for any B satisfying the equation from a) find a curve $A(t)$ in $O(n)$ with initial velocity B. Hint: use the exponential map

$$
e^{A}=\sum_{k=0}^{\infty} \frac{A^{k}}{k!}
$$

c) A very beautiful picture of any such $A(t)$ comes by considering the diagonalization of orthogonal matrices to 2×2 blocks. Write \mathbb{R}^{n} as the orthogonal sum of 2 dimensional subspaces V_{i} (and possible a 1-dimensional subspace W) and set each V_{i} rotating at constant angular speed θ_{i}.
d) What is the dimension of $O(n)$?
3. Recall from analysis that the function

$$
f(x):= \begin{cases}e^{-1 / x} & \text { if } x>0 \\ 0 \text { if } x \leqslant 0,\end{cases}
$$

is a smooth map. Prove: if U is an open set in a smooth manifold M and K is a compact subset of U, then there exists a cutoff function for K in U, i.e. a $\chi: M \rightarrow \mathbb{R}$ such that,
i) χ is smooth,
ii) $0 \leqslant \chi \leqslant 1$,
iii) $\operatorname{spt}(\chi):=\overline{\{p \in M \mid \chi(p) \neq 0\}}$ is a compact subset of U (we say $\operatorname{spt}(\chi)$ is compactly contained in U).
iv) $\chi \equiv 1$ on K.
4. Consider the following alternative version definition of a tangent vector: a tangent vector to M at p is a pair (p, Y) where Y is a derivation at p, meaning that Y is a linear map

$$
Y: C^{\infty}(M) \rightarrow \mathbb{R}, \quad u \mapsto Y \cdot u,
$$

that satisfies the Leibniz rule at p :

$$
Y \cdot(u v)=(Y \cdot u) v(p)+u(p)(Y \cdot v), \quad u, v \in C^{\infty}(M) .
$$

a) It is easy to check that a tangent vector at p (as defined in class) is a derivation at p.
b) Prove that a derivation at p is a tangent vector at p (as defined in class).

Sketch of (b): Let Y be a derivation at p. We will show that Y may be expressed as a linear combination of $\left(\partial / \partial x^{1}\right)_{p, \psi}, \ldots,\left(\partial / \partial x^{n}\right)_{p, \psi}$.
i) Let $\psi=\left(\psi^{1}, \ldots, \psi^{n}\right): U \rightarrow \mathbb{R}^{n}$ be a chart with $p \in U$. Let χ be a cutoff function for p in U that is constant in a neighborhood of p. For each $i=1, \ldots, n$, define a special cut-off coordinate function on M by $\phi^{i}(x):=\chi(x) \psi^{i}(x)$ for $x \in U$, and extend ϕ^{i} by zero on the rest of M. Check that $\phi^{i} \in C^{\infty}(M)$.
ii) Define X in $T_{p} M$ by

$$
X:=\sum_{i=1}^{n} X^{i}\left(\frac{\partial}{\partial x^{i}}\right)_{p, \psi}
$$

where $X^{i}:=Y \cdot \phi^{i}$. Prove: $Y \cdot \phi^{i}=X \cdot \phi^{i}$ for $i=1, \ldots, n$.
iii) Prove that $Y \cdot u=X \cdot u$ for any u in $C^{\infty}(M)$, so Y belongs to $T_{p} M$. Hint: use a special version of the Taylor expansion with remainder to show that u may be written as $u(q)=u(p)+\sum_{i} a_{i} \phi^{i}(q)+\sum_{i} g_{i}(q) \phi^{i}(q)$, where a_{i} are constants and each g_{i} vanishes at p. Then use the fact that Y is a derivation at p. See Lee, Introduction to Smooth Manifolds, p. 64.

