Exercise Sheet 5

- 1 (Quaternions) A Lie group is a smooth manifold endowed with a group structure such that the group operations $(g, h) \mapsto gh$ and $g \mapsto g^{-1}$ are smooth.
 - a) Show that $S^3 := \{V \in Q : |V| = 1\}$ is a Lie group.
 - b) Construct smooth vector fields X, Y, Z on S^3 such that X(p), Y(p), Z(p) are independent for each p, and thereby prove $TS^3 \cong S^3 \times \mathbb{R}^3$.

Hint: Consider, for each $V \in S^3$, the left-multiplication map $L_V : S^3 \to S^3$, $W \mapsto VW$ and compute $(dL_V)_1 : T_1S^3 \to T_VS^3$ on the basis i, j and k.

- 2. Let $O(n) := \{A \in \mathbb{R}^{n \times n} \mid A^T A = I\}$ be the group of ortogonal matrices. (N.B. $\mathbb{K}^{p \times q}$ is the set of all $p \times q$ matrices with entries in \mathbb{K} .)
 - a) Compute a typical tangent vector to O(n) at I as follows. Let A(t) be a smooth curve in $\mathbb{R}^{n \times n}$ with A(0) = I, $A(t) \in O(n)$. Find an equation satisfied by B := dA(0)/dt.
 - b) Conversely, for any B satisfying the equation from a) find a curve A(t) in O(n) with initial velocity B. **Hint**: use the exponential map

$$e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!}.$$

- c) A very beautiful picture of any such A(t) comes by considering the diagonalization of orthogonal matrices to 2×2 blocks. Write \mathbb{R}^n as the orthogonal sum of 2 dimensional subspaces V_i (and possible a 1-dimensional subspace W) and set each V_i rotating at constant angular speed θ_i .
- d) What is the dimension of O(n)?
- 3. Recall from analysis that the function

$$f(x) := \begin{cases} e^{-1/x} & \text{if } x > 0, \\ 0 & \text{if } x \le 0, \end{cases}$$

is a smooth map. Prove: if U is an open set in a smooth manifold M and K is a compact subset of U, then there exists a *cutoff function for* K in U, i.e. a $\chi : M \to \mathbb{R}$ such that,

i) χ is smooth,

- ii) $0 \leq \chi \leq 1$,
- iii) spt $(\chi) := \overline{\{p \in M \mid \chi(p) \neq 0\}}$ is a compact subset of U (we say spt (χ) is compactly contained in U).
- iv) $\chi \equiv 1$ on K.
- 4. Consider the following alternative version definition of a tangent vector: a tangent vector to M at p is a pair (p, Y) where Y is a *derivation at* p, meaning that Y is a linear map

$$Y : C^{\infty}(M) \to \mathbb{R}, \qquad u \mapsto Y \cdot u,$$

that satisfies the Leibniz rule at p:

$$Y \cdot (uv) = (Y \cdot u) v(p) + u(p) (Y \cdot v), \qquad u, v \in C^{\infty}(M).$$

- a) It is easy to check that a tangent vector at p (as defined in class) is a derivation at p.
- b) Prove that a derivation at p is a tangent vector at p (as defined in class).

Sketch of (b): Let Y be a derivation at p. We will show that Y may be expressed as a linear combination of $(\partial/\partial x^1)_{p,\psi}, \ldots, (\partial/\partial x^n)_{p,\psi}$.

- i) Let $\psi = (\psi^1, \dots, \psi^n) : U \to \mathbb{R}^n$ be a chart with $p \in U$. Let χ be a cutoff function for p in U that is constant in a neighborhood of p. For each $i = 1, \dots, n$, define a special cut-off coordinate function on M by $\phi^i(x) := \chi(x)\psi^i(x)$ for $x \in U$, and extend ϕ^i by zero on the rest of M. Check that $\phi^i \in C^\infty(M)$.
- ii) Define X in $T_p M$ by

$$X := \sum_{i=1}^{n} X^{i} \left(\frac{\partial}{\partial x^{i}} \right)_{p,\psi}$$

where $X^i := Y \cdot \phi^i$. Prove: $Y \cdot \phi^i = X \cdot \phi^i$ for i = 1, ..., n.

iii) Prove that $Y \cdot u = X \cdot u$ for any u in $C^{\infty}(M)$, so Y belongs to T_pM . Hint: use a special version of the Taylor expansion with remainder to show that u may be written as $u(q) = u(p) + \sum_i a_i \phi^i(q) + \sum_i g_i(q) \phi^i(q)$, where a_i are constants and each g_i vanishes at p. Then use the fact that Y is a derivation at p. See Lee, Introduction to Smooth Manifolds, p. 64.

Due on Wednesday October 29 (resp. Friday October 31)