Exercise Sheet 6

- 1. a) Let $f: \mathbb{R}^1 \to \mathbb{R}^1$ be a local diffeomorphism. Prove that its image is an open interval and that $f: \mathbb{R}^1 \to f(\mathbb{R}^1)$ is a diffeomorphism.
 - b) Find a function $f: \mathbb{R}^2 \to \mathbb{R}^2$ that is a local diffeomorphism, but is not a diffeomorphism onto its image.
 - c) Show that a local diffeomorphism from a *compact* manifold to another manifold of the same dimension is a covering map.
- 2. Let $f: M \to N$ be a covering map and N connected.
 - a) Show that the number k of elements in $f^{-1}(q)$ is constant on N. (We call f a k-sheeted covering).
 - b) How many "different" 3-sheeted coverings can you find over S^1 ?
- 3. Let $\mathbb{CP}^n := \{ \text{complex lines in } \mathbb{C}^{n+1} \text{ through the origin} \}$. For $z = (z^0, \ldots, z^n) \neq 0$ in \mathbb{C}^{n+1} , define the complex line $[z] \in \mathbb{CP}^n$ by $[z] := \mathbb{C} \cdot z = \{\lambda z | \lambda \in \mathbb{C}\}$. It is conventional to write $[z] = [z_0 : \cdots : z_n]$, which emphasizes that only the ratios $z_i : z_j$ matter. We can endow \mathbb{CP}^n with a smooth structure by declaring the functions

 $I_j: \mathbb{C}^n \to \mathbb{C}\mathbb{P}^n, \qquad I_j(w_1, \dots, w_n) := [w_1: \dots: w_{j-1}: 1: w_j: \dots: w_n],$

for $j = 0, \ldots, n$, to be smooth parametrizations.

- a) Let $S^{2n+1} := \{z \in \mathbb{C}^{n+1} | |z| = 1\}$. Prove that the map $H : S^{2n+1} \to \mathbb{CP}^n$ given by H(z) := [z] is a submersion. This map is called the *Hopf fibration*. The preimages $H^{-1}(q), q \in \mathbb{CP}^n$, yield a decomposition of S^{2n+1} into circles (called *fibers*).
- b) Prove that every sphere of odd dimension carries at least one nowhere-vanishing vector field.
- c)* (For fun) Can S^2 be decomposed into a disjoint union of submanifolds diffeomorphic to S^1 ? Homeomorphic?
- 4. Let M be a smooth manifold.
 - a) Let $p, q \in M$ and let $\gamma : [0, 1] \to M$ be a curve connecting p to q. Observe that any chosen orientation $E = E_{\gamma}(0)$ of $T_p M$ propagates along γ to a unique path $E_{\gamma}(t)$ of orientations of $T_{\gamma(t)}M$ that is "continuous" in t (define this).
 - b) Let γ be a closed curve in M, i.e. $\gamma(0) = \gamma(1)$. We say that γ is orientationpreserving if $E_{\gamma}(0)$ equals $E_{\gamma}(1)$ (for any choice of $E_{\gamma}(0)$); otherwise we say that

 γ is orientation-reversing. Show that M is orientable if and only if every closed curve is orientation-preserving.

- c) Show that the Möbius strip and the Klein bottle are not orientable.
- d) Suppose M is orientable. How many orientations can it have?
- 5. Visualize the Hopf fibration $S^3 \to \mathbb{CP}^1 \cong S^2$ as follows.
 - a) Note that $\mathbb{CP}^1 \cong \mathbb{C} \cup \{\infty\} \cong S^2$ (the Riemann sphere).
 - b) Identify \mathbb{C}^2 with the quaternions Q by identifying (z, w) = (a + bi, c + di) with z + wj = a + bi + cj + dk.
 - c) Identify $S^3 \setminus \{-1\}$ with \mathbb{R}^3 via stereographic projection from the point -1. Locate in the target \mathbb{R}^3 the images of the points $1, \pm i, \pm j, \pm k$ and the 6 "coordinate" great circles of S^3 .
 - d) Partition S^3 into sets $T_r := \{(z, w) : |z| = \cos(r), |w| = \sin(r)\}, 0 \leq r \leq \pi/2$. Observe that T_0 and $T_{\pi/2}$ are great circles of S^3 and are Hopf fibers. Observe that T_r , 0 < r < 1 are all tori and are equidistant from each other (in the path metric of S^3) and that each T_r is a union of Hopf fibers. The middle torus $T_{\pi/4} = \{(e^{is}/\sqrt{2}, e^{it}/\sqrt{2}) : s, t \in \mathbb{R}\}$ is called the *Clifford torus*.
 - e) Visualize the Hopf fibration by drawing all of the Hopf fibers in \mathbb{R}^3 (after stereographic projection). The tori T_r are useful guides.
 - f) The quotient space $S^3/\sim is S^2$, where $\sim is$ the equivalence relation whereby each Hopf fiber becomes a point. So S^3 is an S^2 of S^1 's. Can you "see" the S^2 that is swept out as the fiber S^1 varies in S^3 (as represented via stereographic projection)?
 - g) Can you find the upper and lower hemispheres of the S^2 in your diagram?

Due on Wednesday November 5 (resp. Friday November 7)