Exercise Sheet 7

- 1. We call $J: \mathbb{R}^{2N} \to \mathbb{R}^{2N}$ a complex structure compatible with the Euclidean metric if $J^2 = -id$ and J is an isometry (w.r. to the euclidean metric). (\mathbb{R}^{2N}, J) becomes a complex vector space isomorphic to \mathbb{C}^N . Note that J induces an orientation on \mathbb{R}^{2N} via the real basis $e_1, Je_1, \ldots, e_N, Je_N$, where e_1, \ldots, e_N is any complex basis of (\mathbb{R}^{2N}, J) . Let $\mathcal{J}(\mathbb{R}^{2N})$ be the set of all the complex structures compatible with the euclidean metric. Let $\mathcal{J}_0(\mathbb{R}^{2N})$ be the complex structures that induce the standard orientation and $\mathcal{J}_1(\mathbb{R}^{2N})$ be those that induce the opposite orientation. Show $\mathcal{J}_0(\mathbb{R}^4)$ and $\mathcal{J}_1(\mathbb{R}^4)$ are both diffeomorphic to S^2 , so $\mathcal{J}(\mathbb{R}^4)$ is diffeomorphic to $S^2 \cup S^2$.
- 2) Let $\tilde{G}(n,k)$ be the space of *oriented* k-planes through 0 in \mathbb{R}^n . Show $\tilde{G}(4,2)$ is diffeomorphic to $\mathcal{J}_0(\mathbb{R}^4) \times \mathcal{J}_1(\mathbb{R}^4)$ and hence to $S^2 \times S^2$.
- 3. a) Show that a proper injective immersion is an embedding.
 - b) Give an example of an injective immersion from \mathbb{R} to a two-dimensional manifold whose image is dense in the target manifold and which is hence not an embedding.
- 4. Let M be a smooth manifold. Show TM is always orientable (even if M is not).
- 5. Let $\mathbb{Q} = \mathbb{R}^4$ be the quaternions and write $\mathbb{R}^3 = \{ai + bj + ck \in \mathbb{Q} | a, b, c \in \mathbb{R}\}.$
 - a) Verify that the rule

$$Ad_v \colon w \mapsto vwv^{-1}$$

defines an action of S^3 on \mathbb{R}^3 by linear isometries (with respect to the usual inner product).

b) Describe the action of an element v = a + bi + cj + dk of S^3 on \mathbb{R}^3 geometrically.

Hint: write $v = e^{tu}$ where |u| = 1, $u \in \mathbb{R}^3$, $t \in \mathbb{R}$. Note that $(e^{tu})_{t \in \mathbb{R}}$ parametrizes a subgroup of S^3 .

- c) Verify that the association $v \mapsto Ad_v$ gives a surjective homomorphism and a twosheeted covering map from S^3 to SO(3). Consequently, observe that $SO(3) \cong \mathbb{R}P^3$.
- d) Let US^2 denote the *unit tangent bundle* consisting of vectors in TS^2 with length 1 (in the usual metric). Identify US^2 with the set of all positively oriented orthonormal basis of \mathbb{R}^3 , conclude that US^2 is diffeomorphic to SO(3).

e) The composition

$$S^3 \xrightarrow{Ad} SO(3) \cong US^2 \xrightarrow{\pi} S^2 \cong \mathbb{C}P^1$$

is equivalent to the Hopf fibration.

Due on Wednesday November 12 (resp. Friday November 14)