Exercise Sheet 8

1. (a) Let G be a Lie group and K a discrete, normal subgroup of G. Show that the group homomorphism

$$
G \rightarrow G / K
$$

is a covering map. (It is called a covering homomorphism and G a covering group of G / K. If G is simply connected, we call G the universal covering group of $G / K)$.
(b) Show that a discrete normal subgroup of a connected Lie group G lies in the center of G.
(c) Show that the universal covering group of $S O(4)$ is $S^{3} \times S^{3}$ by finding a covering homomorphism

$$
S^{3} \times S^{3} \rightarrow S O(4)
$$

of degree 2 .
(d) Find all discrete normal subgroups of $S^{3} \times S^{3}$ and the corresponding quotient groups.
(e) Find all discrete normal subgroups of $S U(n)$.
2.* Verify the following:
(a) Every subset of \mathbb{R}^{n} is second countable.
(b) Every closed subset of \mathbb{R}^{n} is σ-compact.
(c) Every smooth submanifold of \mathbb{R}^{n} has a countable atlas.
(d) For a smooth manifold M, the following are equivalent: (a) M is second-countable, (b) M is σ-compact, (c) M has a countable atlas.
(e) If the smooth manifold M is second-countable then M is paracompact.
(f) If the smooth manifold M is paracompact, then there is a (smooth, locally finite) partition of unity subordinate to any open cover of M.
(g) Give an example of a paracompact smooth manifold that is not second-countable.

Note: The Wikipedia article on paracompactness is useful, see also Lee, Introduction to Smooth Manifolds.
3. (a) What is the tangent space at the identity of $O(n)$? of $S O(n)$? of $U(n)$? of $S U(n)$? (Recall exercise sheet 3, exercise 3).
(b) Prove that $O(n)$ is a submanifold of $G L(n)$.
(c) Which of the above groups is connected? (Hint: diagonalize!)
4. (a) Show any closed set $A \subseteq \mathbb{R}^{n}$ is the zero set of some smooth function

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

(b) Let $A \subseteq \mathbb{R}^{n}$ be closed. Show there exists open sets $U_{1} \supseteq U_{2} \supseteq U_{3} \supseteq \ldots$ such that ∂U_{j} is a smooth $(n-1)$-manifold and

$$
A=\bigcap_{j=1}^{\infty} U_{j} .
$$

(Hint: Sard's Theorem.)
(c) Find a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that the set of critical values is \mathbb{Q}.

