Exercise Sheet 9-10 DRAFT

NOTE: This week there is no assignment. Next week we will choose some of these exercises for the next exercise sheet.

1. Let X, Y be differentiable vector fields and f, g differentiable functions. Prove

$$[fX,gY] = fg[X,Y] + f(X \cdot g)Y - g(Y \cdot f)X.$$

2. Consider the ODE system

$$(\star) \quad \left\{ \begin{array}{ll} \frac{d}{dt}x(t) = X(x(t)), \quad t \in (0,T), \\ x(0) = x_0 \end{array} \right.$$

Prove: if $X : \mathbb{R}^n \to \mathbb{R}^n$ is locally Lipschitz, then any two C^1 solutions $x(t), y(t) \in \mathbb{R}^n$ of (\star) agree. Hint: Find a differential inequality for |x(t) - y(t)|.

- **3.** Let $X \in C^k(TM)$ and let $\gamma: (-T, T) \to M$ be a C^1 integral curve of X. Show that γ is C^{k+1} .
- **4.** Let $f: M \to N$ be smooth, $X \in C^{\infty}(TM), Y \in C^{\infty}(TN)$.

Define the *pushforward* of X by f via

$$f_*(X)(q) := df_{f^{-1}(q)}(X(f^{-1}(q))), \quad q \in Y$$

Define the *pullback of* Y by f via

$$f^*(Y)(p) := (df_p)^{-1}(Y(f(p))), \quad p \in X$$

- (a) If f is bijective, $f_*(X)$ is well defined. If f is a diffeomorphism, $f_*(X) \in C^{\infty}(TN)$.
- (b) If f is a local diffeomorphism, $f^*(Y)$ is well defined and lies in $C^{\infty}(TM)$.
- (c) Suppose $f: M \to N$ and $g: N \to P$ are diffeomorphisms. Show

$$f^*g^* = (g \circ f)^*, \quad g_*f_* = (g \circ f)_*,$$
$$f^*f_* = id_{C^{\infty}(TM)}, \quad (f^{-1})^* = f_*.$$

5. (Killing fields on \mathbb{R}^3) Given $v \in \mathbb{R}^3$, define the vectorfields

$$T_v(x) := v, \quad R_v(x) := v \times x, \quad x \in \mathbb{R}^3.$$

(a) Compute $[T_v, T_w]$, $[T_v, R_w]$, and $[R_v, R_w]$ for $v, w \in \mathbb{R}^3$.

Tom Ilmanen

(b) Write $R_i := R_{\frac{\partial}{\partial x_i}}$ and compute the relations

$$[R_i, R_j] = a_{ij}^k R_k, \quad i, j = 1, 2, 3.$$

- (c) Describe the flows $\Phi_t^{T_v}$, $\Phi_t^{R_v}$ geometrically.
- (d) Determine by geometric reasoning conditions on v, w such that the flows $\Phi_t^{T_v}, \Phi_t^{R_w}$ commute. (We say that two diffeomorphisms ϕ, ψ commute if $\phi \circ \psi = \psi \circ \phi$.)
- (e) Determine by computation conditions on v, w such that the Lie brackets $[T_v, R_w]$ vanishes.
- **6.** Let X, Y, Z be smooth vector fields. The Jacobi identity

$$[[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0$$

may be proven as follows:

(a) Show that for any diffeomorphism ϕ ,

$$\phi^*[Y,Z] = [\phi^*Y,\phi^*Z].$$

- (b) Take $\phi = \phi^t$ to be the local flow of X, and differentiate at t = 0.
- **7.** Let G be a Lie group, $e \in G$ the identity element. We call a vector field X on G left-invariant if $L_a^*(X) = X$ for all $a \in G$. Let $\mathcal{G} := \{$ left invariant vector fields on $G \}$.
 - (a) Prove that a left-invariant vector field is smooth.
 - (b) For each $\tilde{X} \in T_e G$, there is a unique left-invariant vector field X with $X(e) = \tilde{X}$. (Thus \mathcal{G} may be identified with the tangent space of G at the identity.)
 - (c) Prove that if X, Y are left-invariant, then so is [X, Y]. Thus \mathcal{G} forms a Lie subalgebra of the Lie algebra $C^{\infty}(TG)$. (\mathcal{G} is called the *Lie algebra of G*. It is a remarkable fact that G can be reconstructed in a neighborhood of the identity from the finite, algebraic information contained in \mathcal{G} .)
- 8. (a) Let $GL(n, \mathbb{R})$ be the invertible $n \times n$ real matrices, with Lie algebra $\mathcal{GL}(n, \mathbb{R}) \cong T_{Id}GL(n, \mathbb{R}) = M^{n \times n}(\mathbb{R})$. Show that the Lie bracket operator $[\cdot, \cdot]$ on $\mathcal{GL}(n, \mathbb{R})$ coincides (as a differential operator) with the anticommutator of matrices AB BA.
 - (b) Compute the Lie algebras of SO(3) and S^3 independently and compare.
- **9.** (a) Let [X, Y] = 0 and let ϕ_t, ψ_t be the flows of X and Y respectively. Prove

$$\phi_t \circ \psi_s = \psi_s \circ \phi_t,$$

wherever these are defined.

(b) Let [X, Y] = 0. Fix $p \in M$ and assume X(p), Y(p) are linearly independent. Prove there are coordinates x^1, \ldots, x^n near p with

$$X = \frac{\partial}{\partial x^1}, \quad Y = \frac{\partial}{\partial x^2},$$

on a neighborhood of p.

(c*) Formulate and prove the analogous result for X_1, \ldots, X_n where $n = \dim M$.

10. Prove that the flows ϕ_s, ψ_t of the vector fields X, Y satisfy

$$\psi_{-t} \circ \phi_{-s} \circ \psi_t \circ \phi_s(x) = x + st[X, Y] + o(|s|^3 + |t|^3)$$

in any coordinate system.

- 11. A car moves in the plane \mathbb{R}^2 , identified with \mathbb{C} . The movement of the car is given by its position $(x_1(t), x_2(t)) \in \mathbb{R}^2$ and its direction given by the unit vector $e^{i\theta} \in S^1$. Moreover, we assume that the direction of movement always coincides with the main axis of the car. Now consider the vector fields $X(x_1, x_2, e^{i\theta}) := (\cos \theta, \sin \theta, ie^{i\theta})$ and $Y(x_1, x_2, e^{i\theta}) := (\cos \theta, \sin \theta, -ie^{i\theta})$ on the configuration space $M := \mathbb{R}^2 \times S^1$.
 - (a) Describe the geometric significance of the flows Γ_t^X, Γ_t^Y for driving around in \mathbb{R}^2 .
 - (b) Compute [X, Y].
 - (c) Why is parking so difficult? (Hint: see the formula in Exercise 9.)

NO DUE DATE FOR THE MOMENT