Supplementary Exercise

1. (a) Define for $\alpha:=(j, \sigma)$ where $j=1, \ldots, n+1, \sigma \in\{+,-\}$ the sets

$$
U^{j,+}:=S^{n} \cap\left\{x^{j}>0\right\}, \quad U^{j,-}:=S^{n} \cap\left\{x^{j}<0\right\}
$$

Consider the maps

$$
\begin{aligned}
\phi^{j, \pm}: U^{j, \pm} & \rightarrow \mathbb{R}^{n} \\
\left(x^{1}, \ldots, x^{n+1}\right) & \mapsto\left(x^{1}, \ldots, x^{j-1}, x^{j} \ldots, x^{n+1}\right)
\end{aligned}
$$

Let $\mathcal{A}_{1}:=\left\{\left(\phi^{\alpha}, U^{\alpha}\right)\right\}$. Show that it is an atlas on S^{n}.
(b) Let $N^{+}:=(0,0, \ldots, 0,1), N^{-}:=(0,0, \ldots, 0,-1)$. Note that the two stereograpic projections

$$
\psi^{+}: V^{+}:=S^{n} /\left\{N^{+}\right\} \rightarrow \mathbb{R}^{n}, \quad \psi^{-}: V^{-}:=S^{n} /\left\{N^{-}\right\} \rightarrow \mathbb{R}^{n}
$$

defined by

$$
\psi^{ \pm}\left(x^{1}, \ldots, x^{n+1}\right)=\frac{\left(x^{1}, \ldots, x^{n+1}\right)}{1 \pm x^{n+1}}
$$

are bijections. Show that $\mathcal{A}_{2}:=\left\{\left(\psi^{ \pm}, V^{ \pm}\right)\right\}$is an atlas on S^{n}.
(c) Show that the two atlases are equivalent.
2. Let $\mathbb{R}^{p}:=\left\{\right.$ lines through the origin in $\left.\mathbb{R}^{n+1}\right\}$. For $p \neq 0$ in \mathbb{R}^{n+1}, let $[p]$ be the line through p and 0 . Show that the map $\pi: S^{n} \rightarrow \mathbb{R} \mathbb{P}^{n}, \pi(p):=[p]$ is smooth.
3. Let M be a set, \mathcal{A} be an atlas on M, and $\overline{\mathcal{A}}$ the associated maximal atlas. Show \mathcal{A} and $\overline{\mathcal{A}}$ induce the same topology on M, i.e. $\mathcal{J}_{\mathcal{A}}=\mathcal{J}_{\overline{\mathcal{A}}}$.
4. Let $\left(M, \mathcal{A}_{M}\right),\left(N, \mathcal{A}_{N}\right)$ be smooth manifolds. Recall the definition in class of an atlas $\mathcal{A}_{M \times N}$ for the cartesian product $M \times N$ by the specification

$$
\mathcal{A}_{M \times N}:=\left\{(U \times V,(\phi, \psi)) \mid(U, \phi) \in \mathcal{A}_{M},(V, \psi) \in \mathcal{A}_{N}\right\} .
$$

(a) Verify $\mathcal{A}_{M \times N}$ is an atlas and $\left(M \times N, \overline{\mathcal{A}}_{M \times N}\right)$ is a smooth manifold. Is $\mathcal{A}_{M \times N}$ maximal?
(b) Prove the canonical projection maps

$$
\begin{aligned}
& \pi_{M}: M \times N \rightarrow M \\
& \pi_{N}: M \times N \rightarrow N
\end{aligned}
$$

are smooth.
5. (a) Let M_{1} be the configuration space of all triangles in the plane with side lengths 3,4 and 5 . What manifold is this?
(b) Let M_{2} be the configuration space of all equilateral triangles in the plane with side length 1 . What manifold is this?
6. The Möbius band M is the strip $S:=(0,3) \times(0,1)$ identified with itself via the equivalence relation characterized by

$$
(x, y) \sim(x+2,1-y)
$$

whenever the two points lie in S, that is, $M:=S / \sim$. Give M the structure of a smooth manifold by specifying an atlas consisting of two charts.
7. Let $\left(M^{n}, \mathcal{A}\right),\left(N^{m}, \mathcal{B}\right)$ be smooth manifolds, $f: M \rightarrow N$. Show: f is smooth at x in some chart iff it is smooth in all charts, i.e. TFAE
(a) there exists charts $(U, \phi) \in \mathcal{A},(V, \psi) \in \mathcal{B}$ and a open set $W \subseteq U$ such that $x \in W, f(W) \subseteq V$, and

$$
\left.\psi \circ f \circ \phi^{-1}\right|_{\phi(W)}: \phi(W) \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m},
$$

is smooth.
(b) For all charts $(U, \phi) \in \mathcal{A},(V, \psi) \in \mathcal{B}$ with $x \in U, f(x) \in V$, there exists an open set $W \subseteq U$ such that $x \in W, f(W) \subseteq V$, and

$$
\left.\psi \circ f \circ \phi^{-1}\right|_{\phi(W)}: \phi(W) \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m},
$$

is smooth.
8. Let M be a smooth manifold and $\psi: U \rightarrow \mathbb{R}^{n}$ a chart for M. Let

$$
\left(\frac{\partial}{\partial x^{i}}\right)_{p, \psi} \in T_{p} M, \quad p \in U, \quad i=1, \ldots, n
$$

be the coordinate vector fields on U induced by the chart ψ. Prove that $T_{p} M$ is a vector space with basis $\left(\frac{\partial}{\partial x^{1}}\right)_{p, \psi}, \ldots,\left(\frac{\partial}{\partial x^{n}}\right)_{p, \psi}$ by establishing
(a) prove that

$$
\left(\frac{\partial}{\partial x^{1}}\right)_{p, \psi}, \ldots,\left(\frac{\partial}{\partial x^{n}}\right)_{p, \psi}
$$

are linearly independent.
(b) Prove that any $X \in T_{p} M$ can be expressed as a linear combination of

$$
\left(\frac{\partial}{\partial x^{1}}\right)_{p, \psi}, \ldots,\left(\frac{\partial}{\partial x^{n}}\right)_{p, \psi}
$$

(c) Prove that any linear combination of

$$
\left(\frac{\partial}{\partial x^{1}}\right)_{p, \psi}, \ldots,\left(\frac{\partial}{\partial x^{n}}\right)_{p, \psi}
$$

lies in $T_{p} M$.

This completes the proof that $T_{p} M$ is a vector space with basis

$$
\left(\frac{\partial}{\partial x^{1}}\right)_{p}, \ldots,\left(\frac{\partial}{\partial x^{n}}\right)_{p}
$$

9. Let M be a smooth manifold with atlas $\mathcal{A}_{M}=\{(U, \phi)\}$.
(a) Construct a corresponding atlas $\mathcal{A}_{T M}=\{(\mathcal{U}, \Phi)\}$ for the tangent bundle $T M$ of M (repeat the definition from class).
(b) Prove $\mathcal{A}_{T M}$ is an atlas and $\left(T M, \mathcal{A}_{T M}\right)$ is a smooth manifold.
10. Let M be a smooth manifold, and let D be the set $\cup_{p \in M} D_{p}$, where D_{p} is the set of orientations of $T_{p} M$ (a two-element set).
(a) Show that D naturally has the structure of a smooth manifold with a covering map $D \rightarrow M$ of degree 2 . D is called the orientation double cover of M.
(b) Show that an orientation of M corresponds to a continuous section of the covering map $D \rightarrow M$ (that is, a map $f: M \rightarrow D$ such that $f(p) \in D_{p}$ for each p).
(c) In particular, M is orientable if and only if D is diffeomorphic to the product $M \times\{0,1\}$ (as covering space of M).
(d) Show that D is oriented in a natural way.
11. Let $\left(M, \mathcal{A}_{M}\right)$ be a smooth manifold. Let $\left(N, \mathcal{A}_{N}\right)$ be a submanifold of M. Let \mathcal{J}_{N} be the topology on M induced by \mathcal{A}_{M}). Prove: the topology induced on N by \mathcal{A}_{N} (the atlas topology) coincide with the topology induced on N by \mathcal{J}_{M} (the subspace topology).
12. (Continued form exercise sheet 3 , exercise 3) Verify that the Veronese map $f: \mathbb{R P}^{2} \rightarrow$ $\mathbb{R}^{4},[x, y, z] \mapsto\left(x^{2}-y^{2}, x y, x z, y z\right)$ is an embedding.
13. (a) Show that D naturally has the structure of a smooth manifold with a covering map $D \rightarrow M$ of degree 2 . D is called the orientation double cover of M.
(b) Show that an orientation of M corresponds to a continuous section of the covering map $D \rightarrow M$ (that is, a map $f: M \rightarrow D$ such that $f(p) \in D_{p}$ for each p).
(c) In particular, M is orientable if and only if D is diffeomorphic to the product $M \times\{0,1\}$ (as a covering space of M).
(d) Show that D is naturally oriented.
14. Find a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that the set of critical values is \mathbb{Q}.
15. (a) Prove: if $f: U \subseteq \mathbb{R}^{n} \rightarrow f(U) \subseteq \mathbb{R}^{n}$ is a diffeomorphism, then

$$
\mathcal{L}^{n}(f(A))=0 \Leftrightarrow \mathcal{L}^{n}(A)=0
$$

for all $A \subseteq U$.
(b) Use (a) to construct a consistent definition of "sets of measure zero" in a (secondcountable) n-manifold.
16. (a) Describe the group $\operatorname{Isom}\left(T^{2}\right)$.
(b) Describe the group $\operatorname{Isom}\left(\mathbb{R}^{2}\right)$.
17. Define $\exp : \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$ by

$$
\exp (A):=\sum_{k=0}^{\infty} \frac{A^{k}}{k!}
$$

(a) Prove exp is well defined and smooth.
(b) Show $d(\exp (t A)) / d t=A \exp (t A)$.
(c) Show $t \mapsto \exp (t A)$ is a 1 -parameter subgroup.
(d) Show that $\left.\exp \right|_{U}$ is a diffeomorphism onto its image for some open set $U \ni 0$.
(e) Show exp is not in general a local diffeomorphism.
(f) Show $\exp (A) \in G L_{+}(n, \mathbb{R})$ but $\exp : \mathbb{R}^{n \times n} \rightarrow G L_{+}(n, \mathbb{R})$ is not surjective in general.
18. (The classical Lie Groups) Determine the Lie algebras of the following Lie groups (as a vector space of $n \times n$ matrices) and compute their (real) dimensions:
(a) $G L(n, \mathbb{R})=\left\{A \in M^{n \times n}(\mathbb{R}): \operatorname{det} A \neq 0\right\}$.
(b) $S L(n, \mathbb{R})=\{A \in G L(n, \mathbb{R}): \operatorname{det} A=1\}$.
(c) $O(n, \mathbb{R})=\left\{A \in G L(n, \mathbb{R}): A^{T} A=i d\right\}$.
(d) $S O(n, \mathbb{R})=\{A \in O(n, \mathbb{R}): \operatorname{det} A=1\}$.
(e) $G L(n, \mathbb{C})$.
(f) $S L(n, \mathbb{C})$.
(g) $U(n)=\left\{A \in G L(n, \mathbb{C}): A^{*} A=i d\right\}$.
(h) $S U(n)=\{A \in U(n, \mathbb{C}): \operatorname{det} A=1\}$.
(i) $\operatorname{Sp}(n)=\{A \in G L(2 n, \mathbb{Q}): A$ preserves the standard quaternionic hermitian form $\}$.
(j) Which of these Lie groups are compact, connected or have non-trivial center?

