D-MATH, HS 2014

Supplementary Exercise

1. (a) Define for $\alpha := (j, \sigma)$ where $j = 1, \dots, n+1, \sigma \in \{+, -\}$ the sets

$$U^{j,+} := S^n \cap \{x^j > 0\}, \quad U^{j,-} := S^n \cap \{x^j < 0\}.$$

Consider the maps

$$\phi^{j,\pm}: U^{j,\pm} \to \mathbb{R}^n$$

$$(x^1, \dots, x^{n+1}) \mapsto (x^1, \dots, x^{j-1}, x^j, \dots, x^{n+1})$$

Let $\mathcal{A}_1 := \{(\phi^{\alpha}, U^{\alpha})\}$. Show that it is an atlas on S^n .

(b) Let $N^+ := (0, 0, \dots, 0, 1), N^- := (0, 0, \dots, 0, -1)$. Note that the two stereograpic projections

$$\psi^+ \; : \; V^+ := S^n/\left\{N^+\right\} \to \mathbb{R}^n, \quad \psi^- \; : \; V^- := S^n/\left\{N^-\right\} \to \mathbb{R}^n$$

defined by

$$\psi^{\pm}(x^1,\dots,x^{n+1}) = \frac{(x^1,\dots,x^{n+1})}{1 \pm x^{n+1}},$$

are bijections. Show that $A_2 := \{(\psi^{\pm}, V^{\pm})\}$ is an atlas on S^n .

- (c) Show that the two atlases are equivalent.
- **2.** Let $\mathbb{RP}^n := \{ \text{lines through the origin in } \mathbb{R}^{n+1} \}$. For $p \neq 0$ in \mathbb{R}^{n+1} , let [p] be the line through p and 0. Show that the map $\pi : S^n \to \mathbb{RP}^n$, $\pi(p) := [p]$ is smooth.
- **3.** Let M be a set, \mathcal{A} be an atlas on M, and $\bar{\mathcal{A}}$ the associated maximal atlas. Show \mathcal{A} and $\bar{\mathcal{A}}$ induce the same topology on M, i.e. $\mathcal{J}_{\mathcal{A}} = \mathcal{J}_{\bar{\mathcal{A}}}$.
- **4.** Let (M, \mathcal{A}_M) , (N, \mathcal{A}_N) be smooth manifolds. Recall the definition in class of an atlas $\mathcal{A}_{M\times N}$ for the cartesian product $M\times N$ by the specification

$$\mathcal{A}_{M\times N} := \{ (U\times V, (\phi, \psi)) | (U, \phi) \in \mathcal{A}_M, (V, \psi) \in \mathcal{A}_N \}.$$

- (a) Verify $\mathcal{A}_{M\times N}$ is an atlas and $(M\times N, \bar{\mathcal{A}}_{M\times N})$ is a smooth manifold. Is $\mathcal{A}_{M\times N}$ maximal?
- (b) Prove the canonical projection maps

$$\pi_M: M \times N \to M$$

$$\pi_N: M \times N \to N$$

are smooth.

- **5.** (a) Let M_1 be the configuration space of all triangles in the plane with side lengths 3, 4 and 5. What manifold is this?
 - (b) Let M_2 be the configuration space of all equilateral triangles in the plane with side length 1. What manifold is this?
- **6.** The Möbius band M is the strip $S := (0,3) \times (0,1)$ identified with itself via the equivalence relation characterized by

$$(x,y) \sim (x+2,1-y)$$

whenever the two points lie in S, that is, $M := S/\sim$. Give M the structure of a smooth manifold by specifying an atlas consisting of two charts.

- 7. Let (M^n, \mathcal{A}) , (N^m, \mathcal{B}) be smooth manifolds, $f: M \to N$. Show: f is smooth at x in some chart iff it is smooth in all charts, i.e. TFAE
 - (a) there exists charts $(U, \phi) \in \mathcal{A}$, $(V, \psi) \in \mathcal{B}$ and a open set $W \subseteq U$ such that $x \in W$, $f(W) \subseteq V$, and

$$\psi \circ f \circ \phi^{-1}|_{\phi(W)} : \phi(W) \subseteq \mathbb{R}^n \to \mathbb{R}^m,$$

is smooth.

(b) For all charts $(U, \phi) \in \mathcal{A}$, $(V, \psi) \in \mathcal{B}$ with $x \in U$, $f(x) \in V$, there exists an open set $W \subseteq U$ such that $x \in W$, $f(W) \subseteq V$, and

$$\psi \circ f \circ \phi^{-1}|_{\phi(W)} : \phi(W) \subseteq \mathbb{R}^n \to \mathbb{R}^m$$

is smooth.

8. Let M be a smooth manifold and $\psi: U \to \mathbb{R}^n$ a chart for M. Let

$$\left(\frac{\partial}{\partial x^i}\right)_{p,\psi} \in T_p M, \quad p \in U, \quad i = 1, \dots, n$$

be the coordinate vector fields on U induced by the chart ψ . Prove that T_pM is a vector space with basis $\left(\frac{\partial}{\partial x^1}\right)_{p,\psi},\ldots,\left(\frac{\partial}{\partial x^n}\right)_{p,\psi}$ by establishing

(a) prove that

$$\left(\frac{\partial}{\partial x^1}\right)_{p,\psi},\dots,\left(\frac{\partial}{\partial x^n}\right)_{p,\psi}$$

are linearly independent.

(b) Prove that any $X \in T_pM$ can be expressed as a linear combination of

$$\left(\frac{\partial}{\partial x^1}\right)_{p,\psi}, \dots, \left(\frac{\partial}{\partial x^n}\right)_{p,\psi}$$

(c) Prove that any linear combination of

$$\left(\frac{\partial}{\partial x^1}\right)_{p,\psi}, \dots, \left(\frac{\partial}{\partial x^n}\right)_{p,\psi}$$

lies in T_pM .

This completes the proof that T_pM is a vector space with basis

$$\left(\frac{\partial}{\partial x^1}\right)_p, \dots, \left(\frac{\partial}{\partial x^n}\right)_p.$$

- **9.** Let M be a smooth manifold with atlas $\mathcal{A}_M = \{(U, \phi)\}.$
 - (a) Construct a corresponding atlas $\mathcal{A}_{TM} = \{(\mathcal{U}, \Phi)\}$ for the tangent bundle TM of M (repeat the definition from class).
 - (b) Prove A_{TM} is an atlas and (TM, A_{TM}) is a smooth manifold.
- **10.** Let M be a smooth manifold, and let D be the set $\cup_{p \in M} D_p$, where D_p is the set of orientations of T_pM (a two-element set).
 - (a) Show that D naturally has the structure of a smooth manifold with a covering map $D \to M$ of degree 2. D is called the *orientation double cover* of M.
 - (b) Show that an orientation of M corresponds to a continuous section of the covering map $D \to M$ (that is, a map $f: M \to D$ such that $f(p) \in D_p$ for each p).
 - (c) In particular, M is orientable if and only if D is diffeomorphic to the product $M \times \{0,1\}$ (as covering space of M).
 - (d) Show that D is oriented in a natural way.
- 11. Let (M, \mathcal{A}_M) be a smooth manifold. Let (N, \mathcal{A}_N) be a submanifold of M. Let \mathcal{J}_N be the topology on M induced by \mathcal{A}_M). Prove: the topology induced on N by \mathcal{A}_N (the atlas topology) coincide with the topology induced on N by \mathcal{J}_M (the subspace topology).
- **12.** (Continued form exercise sheet 3, exercise 3) Verify that the Veronese map $f: \mathbb{RP}^2 \to \mathbb{R}^4$, $[x, y, z] \mapsto (x^2 y^2, xy, xz, yz)$ is an embedding.
- 13. (a) Show that D naturally has the structure of a smooth manifold with a covering map $D \to M$ of degree 2. D is called the *orientation double cover* of M.
 - (b) Show that an orientation of M corresponds to a continuous section of the covering map $D \to M$ (that is, a map $f: M \to D$ such that $f(p) \in D_p$ for each p).
 - (c) In particular, M is orientable if and only if D is diffeomorphic to the product $M \times \{0,1\}$ (as a covering space of M).
 - (d) Show that *D* is naturally oriented.
- **14.** Find a function $f: \mathbb{R} \to \mathbb{R}$ such that the set of critical values is \mathbb{Q} .
- **15.** (a) Prove: if $f: U \subseteq \mathbb{R}^n \to f(U) \subseteq \mathbb{R}^n$ is a diffeomorphism, then

$$\mathcal{L}^n(f(A)) = 0 \Leftrightarrow \mathcal{L}^n(A) = 0$$

for all $A \subseteq U$.

- (b) Use **(a)** to construct a consistent definition of "sets of measure zero" in a (second-countable) *n*-manifold.
- **16.** (a) Describe the group $Isom(T^2)$.

- (b) Describe the group $Isom(\mathbb{R}^2)$.
- 17. Define exp: $\mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ by

$$\exp(A) := \sum_{k=0}^{\infty} \frac{A^k}{k!}$$

- (a) Prove exp is well defined and smooth.
- (b) Show $d(\exp(tA))/dt = A \exp(tA)$.
- (c) Show $t \mapsto \exp(tA)$ is a 1-parameter subgroup.
- (d) Show that $\exp |_U$ is a diffeomorphism onto its image for some open set $U \ni 0$.
- (e) Show exp is not in general a local diffeomorphism.
- (f) Show $\exp(A) \in GL_+(n,\mathbb{R})$ but $\exp : \mathbb{R}^{n \times n} \to GL_+(n,\mathbb{R})$ is not surjective in general.
- 18. (The classical Lie Groups) Determine the Lie algebras of the following Lie groups (as a vector space of $n \times n$ matrices) and compute their (real) dimensions:
 - (a) $GL(n, \mathbb{R}) = \{ A \in M^{n \times n}(\mathbb{R}) : \det A \neq 0 \}.$
 - (b) $SL(n,\mathbb{R}) = \{A \in GL(n,\mathbb{R}) : \det A = 1\}.$
 - (c) $O(n, \mathbb{R}) = \{ A \in GL(n, \mathbb{R}) : A^T A = id \}.$
 - (d) $SO(n, \mathbb{R}) = \{ A \in O(n, \mathbb{R}) : \det A = 1 \}.$
 - (e) $GL(n, \mathbb{C})$.
 - (f) $SL(n, \mathbb{C})$.
 - (g) $U(n) = \{ A \in GL(n, \mathbb{C}) : A^*A = id \}.$
 - (h) $SU(n) = \{ A \in U(n, \mathbb{C}) : \det A = 1 \}.$
 - (i) $Sp(n) = \{A \in GL(2n, \mathbb{Q}) : A \text{ preserves the standard quaternionic hermitian form} \}.$
 - (j) Which of these Lie groups are compact, connected or have non-trivial center?