Coordinator Ren Liu

Interest Rate Theory Exercise Sheet 2

Consider a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \ge 0}, \mathbb{P})$ carrying a (standard) Brownian motion $W = (W_t)_{t \ge 0}$.

1. Let $n \in \mathbb{N}$ be arbitrary and let $(t_i)_{i \in \{0,...,n\}}$ be an (n+1)-tuple of positive real numbers with the property that $0 = t_0 < t_1 < \ldots < t_n < \infty$. Consider a simple integrand

$$h: \Omega \times \mathbb{R}_+ \longrightarrow \mathbb{R}, (\omega, t) \longmapsto h(\omega, t)$$

of the form¹

$$h(\omega, t) = \sum_{i=1}^{n} \varphi_i(\omega) \mathbb{I}_{(t_{i-1}, t_i]}(t), \qquad (1)$$

where φ_i are $\mathcal{F}_{t_{i-1}}$ -measurable random variables, bounded in $\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$, and let

$$(h \bullet W)_t := \int_0^t h(s) dW_s = \sum_{i=1}^n \varphi_i (W_{t_i \wedge t} - W_{t_{i-1} \wedge t})$$

denote the stochastic integral of h with respect to Brownian motion W.

- a) Show that the process $h \bullet W$ is a continuous martingale.
- **b**) Show the Itô isometry for $h \bullet W$, i.e.

$$\mathbb{E}\left[\left(\int_0^\infty h(s)dW_s\right)^2\right] = \mathbb{E}\left[\int_0^\infty |h(s)|^2 \, ds\right].$$
 (2)

2. (Yor's Formula) Let X be an Itô process and let $\mathcal{E}(X)$ denote its stochastic exponential

$$\mathcal{E}_t(X) := e^{X(t) - X(0) - \frac{1}{2} \langle X, X \rangle_t}.$$

Show the identity

$$\mathcal{E}(X)\mathcal{E}(Y) = \mathcal{E}(X+Y)e^{\langle X,Y\rangle}.$$

¹We assume that $h_0(\omega) = \varphi_1(\omega)$.

Bitte wenden!

3. Consider the Ornstein-Uhlenbeck process

$$X_t = xe^{-\lambda t} + \nu(1 - e^{-\lambda t}) + \int_0^t \sigma e^{\lambda(s-t)} dW_s, \quad t \ge 0$$
(3)

for an $x \in \mathbb{R}$, where the parameters ν and $\lambda, \sigma > 0$ take real values.

a) Show that X satisfies the Ornstein-Uhlenbeck stochastic differential equation:

$$dX_t = \lambda(\nu - X_t)dt + \sigma dW_t, \quad X_0 = x.$$

b) Calculate the mean and variance functions of *X*:

$$T \mapsto \mathbb{E}[X_T]$$
, and $T \mapsto \operatorname{Var}[X_T]$.

c) For $\tau > 0$ consider the rescaled AR(1) process $(Y^{\tau})_{n \ge 0}$ defined by

$$Y_n^{\tau} = c_{\tau} + \varphi_{\tau} Y_{n-1}^{\tau} + \sigma_{\tau} \varepsilon_n, \quad Y_0^{\tau} = x$$

with $c_{\tau} = \lambda \nu \tau$, $\varphi_{\tau} = 1 - \lambda \tau$, $\sigma_{\tau} = \sigma \sqrt{\tau}$ and ε_n are i.i.d standard Gaussian random variables. Verify that the corresponding mean and variance of $Y_{[t/\tau]}^{\tau}$ indeed converge to its Ornstein-Uhlenbeck counterpart, i.e,

$$\mathbb{E}[Y_{[t/\tau]}^{\tau}] \to \mathbb{E}[X_t] \quad \text{and} \quad Var[Y_{[t/\tau]}^{\tau}] \to Var[X_t] \quad \text{as} \quad \tau \to 0,$$

where [x] denotes the integer part of x.

Note: It can be shown that the rescaled process $Y_{[t/\tau]}^{\tau}$ converges weakly to the Ornstein-Uhlenbeck process X_t as $\tau \to 0$.

- 4. Consider again the Ornstein-Uhlenbeck process X in the setting of Ex 2-3.
 - a) Show that for any T > 0 the distribution of X_T is given by

$$X_T \sim \mathcal{N}\left(xe^{-\lambda T} + \nu(1 - e^{-\lambda T}), \frac{\sigma^2}{2\lambda}(1 - e^{-2\lambda T})\right)$$

by proceeding as follows:

• Show in general for arbitrary T > 0, that if

$$f: [0,T] \longrightarrow \mathbb{R} \in C^0([0,T]),$$

then
$$\int_0^T f(s) dW_s \sim \mathcal{N}\left(0, \int_0^T (f(s))^2 ds\right).$$
 (4)

Siehe nächstes Blatt!

• Conclude the statement using the first step and Ex 2-3 b).

Hint: For the first point approximate the process by simple functions, then use Lévy's continuity theorem and the fact that the characteristic function of a random variable uniquely characterizes its distribution.

- **b**) Compute $\mathbb{E}[X_T^+]$ explicitly
- 5. Matlab Implementation Given a finite time horizon T = 1, the aim of this exercise is to simulate the Ornstein-Uhlenbeck process and the Cox-Ingersoll-Ross process on the time interval [0, T] using the *Euler-Maruyama scheme*. We define an equidistant decomposition $\{0 = t_0 < ... < t_n = T\}$ of the interval [0, T] by setting

$$t_i := \frac{i}{M}T, \quad i = 0, \dots, M = 10^3.$$

If X is a process on the interval [0, T] satisfying the stochastic differential equation

$$dX_t = a(t, X_t)dt + b(t, X_t)dW_t$$

with initial condition $X_0 = x$ for an $x \in \mathbb{R}$, and $t_0 = 0 < t_1 < \ldots < t_M = T$ is a given discretization of the time interval [0, T], then an *Euler-Maruyama approximation*² of X is given by the iterative scheme: $X_0 = x$ and

$$X_{t_{i+1}} = X_{t_i} + a(t_i, X_{t_i})(t_{i+1} - t_i) + b(t_i, X_{t_i})(W_{t_{i+1}} - W_{t_i}), \quad i = 0, \dots, M - 1.$$

- a) Simulate 10 sample paths of the OU-process X from Ex 2-3 with $\lambda = 1, \nu = 1.2, \sigma = 0.3$ and $X_0 = 1$.
- **b**) Use Monte-Carlo simulation $(N = 10^5)$ to compute $\mathbb{E}[X_1], \mathbb{E}[X_1^2], \mathbb{E}[X_1^+]$
- c) Consider the Cox-Ingersoll-Ross process Y defined by the following SDE:

$$dY_t = \lambda(\nu - Y_t)dt + \sigma\sqrt{Y_t}dW_t, \quad Y_0 = y.$$

Assuming $2\lambda \nu \geq \sigma^2$ repeat the tasks (a) and (b) for the CIR process. Is there a potential problem for the simulation procedure?

²As a reference for the Euler-Maruyama approximation see for example Section 3.2 of *Numerical Solution of SDE Through Computer Experiments* (Kloeden, Platen, Schurz).