Interest Rate Theory Exercise Sheet 2

Consider a filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$ carrying a (standard) Brownian motion $W=\left(W_{t}\right)_{t \geq 0}$.

1. Let $n \in \mathbb{N}$ be arbitrary and let $\left(t_{i}\right)_{i \in\{0, \ldots, n\}}$ be an $(n+1)$-tuple of positive real numbers with the property that $0=t_{0}<t_{1}<\ldots<t_{n}<\infty$. Consider a simple integrand

$$
h: \Omega \times \mathbb{R}_{+} \longrightarrow \mathbb{R},(\omega, t) \longmapsto h(\omega, t)
$$

of the form ${ }^{1}$

$$
\begin{equation*}
h(\omega, t)=\sum_{i=1}^{n} \varphi_{i}(\omega) \mathbb{I}_{\left(t_{i-1}, t_{i}\right]}(t) \tag{1}
\end{equation*}
$$

where φ_{i} are $\mathcal{F}_{t_{i-1}}$-measurable random variables, bounded in $\mathcal{L}^{2}(\Omega, \mathcal{F}, \mathbb{P})$, and let

$$
(h \bullet W)_{t}:=\int_{0}^{t} h(s) d W_{s}=\sum_{i=1}^{n} \varphi_{i}\left(W_{t_{i} \wedge t}-W_{t_{i-1} \wedge t}\right)
$$

denote the stochastic integral of h with respect to Brownian motion W.
a) Show that the process $h \bullet W$ is a continuous martingale.
b) Show the Itô isometry for $h \bullet W$, i.e.

$$
\begin{equation*}
\mathbb{E}\left[\left(\int_{0}^{\infty} h(s) d W_{s}\right)^{2}\right]=\mathbb{E}\left[\int_{0}^{\infty}|h(s)|^{2} d s\right] \tag{2}
\end{equation*}
$$

2. (Yor's Formula) Let X be an Itô process and let $\mathcal{E}(X)$ denote its stochastic exponential

$$
\mathcal{E}_{t}(X):=e^{X(t)-X(0)-\frac{1}{2}\langle X, X\rangle_{t}} .
$$

Show the identity

$$
\mathcal{E}(X) \mathcal{E}(Y)=\mathcal{E}(X+Y) e^{\langle X, Y\rangle}
$$

[^0]3. Consider the Ornstein-Uhlenbeck process
\[

$$
\begin{equation*}
X_{t}=x e^{-\lambda t}+\nu\left(1-e^{-\lambda t}\right)+\int_{0}^{t} \sigma e^{\lambda(s-t)} d W_{s}, \quad t \geq 0 \tag{3}
\end{equation*}
$$

\]

for an $x \in \mathbb{R}$, where the parameters ν and $\lambda, \sigma>0$ take real values.
a) Show that X satisfies the Ornstein-Uhlenbeck stochastic differential equation:

$$
d X_{t}=\lambda\left(\nu-X_{t}\right) d t+\sigma d W_{t}, \quad X_{0}=x
$$

b) Calculate the mean and variance functions of X :

$$
T \mapsto \mathbb{E}\left[X_{T}\right], \quad \text { and } \quad T \mapsto \operatorname{Var}\left[X_{T}\right] .
$$

c) For $\tau>0$ consider the rescaled $A R(1)$ process $\left(Y^{\tau}\right)_{n \geq 0}$ defined by

$$
Y_{n}^{\tau}=c_{\tau}+\varphi_{\tau} Y_{n-1}^{\tau}+\sigma_{\tau} \varepsilon_{n}, \quad Y_{0}^{\tau}=x
$$

with $c_{\tau}=\lambda \nu \tau, \varphi_{\tau}=1-\lambda \tau, \sigma_{\tau}=\sigma \sqrt{\tau}$ and ε_{n} are i.i.d standard Gaussian random variables. Verify that the corresponding mean and variance of $Y_{[t / \tau]}^{\tau}$ indeed converge to its Ornstein-Uhlenbeck counterpart, i.e,

$$
\mathbb{E}\left[Y_{[t / \tau]}^{\tau}\right] \rightarrow \mathbb{E}\left[X_{t}\right] \quad \text { and } \quad \operatorname{Var}\left[Y_{[t / \tau]}^{\tau}\right] \rightarrow \operatorname{Var}\left[X_{t}\right] \quad \text { as } \quad \tau \rightarrow 0,
$$

where $[x]$ denotes the integer part of x.
Note: It can be shown that the rescaled process $Y_{[t / \tau]}^{\tau}$ converges weakly to the Ornstein-Uhlenbeck process X_{t} as $\tau \rightarrow 0$.
4. Consider again the Ornstein-Uhlenbeck process X in the setting of Ex 2-3.
a) Show that for any $T>0$ the distribution of X_{T} is given by

$$
X_{T} \sim \mathcal{N}\left(x e^{-\lambda T}+\nu\left(1-e^{-\lambda T}\right), \frac{\sigma^{2}}{2 \lambda}\left(1-e^{-2 \lambda T}\right)\right)
$$

by proceeding as follows:

- Show in general for arbitrary $T>0$, that if

$$
\begin{gather*}
f:[0, T] \longrightarrow \mathbb{R} \in C^{0}([0, T]) \\
\text { then } \quad \int_{0}^{T} f(s) d W_{s} \sim \mathcal{N}\left(0, \int_{0}^{T}(f(s))^{2} d s\right) . \tag{4}
\end{gather*}
$$

Siehe nächstes Blatt!

- Conclude the statement using the first step and Ex 2-3 b).

Hint: For the first point approximate the process by simple functions, then use Lévy's continuity theorem and the fact that the characteristic function of a random variable uniquely characterizes its distribution.
b) Compute $\mathbb{E}\left[X_{T}^{+}\right]$explicitly
5. Matlab Implementation Given a finite time horizon $T=1$, the aim of this exercise is to simulate the Ornstein-Uhlenbeck process and the Cox-Ingersoll-Ross process on the time interval $[0, T]$ using the Euler-Maruyama scheme. We define an equidistant decomposition $\left\{0=t_{0}<\ldots<t_{n}=T\right\}$ of the interval $[0, T]$ by setting

$$
t_{i}:=\frac{i}{M} T, \quad i=0, \ldots, M=10^{3} .
$$

If X is a process on the interval $[0, T]$ satisfying the stochastic differential equation

$$
d X_{t}=a\left(t, X_{t}\right) d t+b\left(t, X_{t}\right) d W_{t}
$$

with initial condition $X_{0}=x$ for an $x \in \mathbb{R}$, and $t_{0}=0<t_{1}<\ldots<t_{M}=T$ is a given discretization of the time interval $[0, T]$, then an Euler-Maruyama approximation ${ }^{2}$ of X is given by the iterative scheme: $X_{0}=x$ and

$$
X_{t_{i+1}}=X_{t_{i}}+a\left(t_{i}, X_{t_{i}}\right)\left(t_{i+1}-t_{i}\right)+b\left(t_{i}, X_{t_{i}}\right)\left(W_{t_{i+1}}-W_{t_{i}}\right), \quad i=0, \ldots, M-1
$$

a) Simulate 10 sample paths of the OU-process X from Ex 2-3 with $\lambda=1, \nu=1.2$, $\sigma=0.3$ and $X_{0}=1$.
b) Use Monte-Carlo simulation $\left(N=10^{5}\right)$ to compute $\mathbb{E}\left[X_{1}\right], \mathbb{E}\left[X_{1}^{2}\right], \mathbb{E}\left[X_{1}^{+}\right]$
c) Consider the Cox-Ingersoll-Ross process Y defined by the following SDE:

$$
d Y_{t}=\lambda\left(\nu-Y_{t}\right) d t+\sigma \sqrt{Y_{t}} d W_{t}, \quad Y_{0}=y
$$

Assuming $2 \lambda \nu \geq \sigma^{2}$ repeat the tasks (a) and (b) for the CIR process. Is there a potential problem for the simulation procedure?

[^1]
[^0]: ${ }^{1}$ We assume that $h_{0}(\omega)=\varphi_{1}(\omega)$.

[^1]: ${ }^{2}$ As a reference for the Euler-Maruyama approximation see for example Section 3.2 of Numerical Solution of SDE Through Computer Experiments (Kloeden, Platen, Schurz).

