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1. Let us consider the general short rate model introduced in the lecture. That is, we
assume,

(i) the short rate follows an Itô process

dr(t) = b(t)dt+ σ(t)dWt

determining the money-market account B(t) = exp (
∫ t
0
r(s)ds)

(ii) no arbitrage: there exists an EMM Q of the form

dQ
dP

= E(γ •W )∞

such that the discounted bond prices P (t, T )/B(t), t ≤ T are Q− martingales
and P (T, T ) = 1 for all T > 0.

Under the above assumptions show that

a) the process r satisfies under Q

dr(t) = (b(t) + σ(t)γ(t)) dt+ σ(t)dWQ(t),

where WQ denotes a Q− Brownian motion.

b) If the filtration (Ft) is generated by the Brownian motionW , for any T > 0 there
exists a process v(t, T ) ∈ L such that

dP (t, T )

P (t, T )
= r(t)dt+ v(t, T )dWQ(t).

c) Conclude that
P (t, T )

B(t)
= P (0, T )E

(
v(·, T ) •WQ

)
t
.

Bitte wenden!



2. Compute directly the price at time t of a zero coupon bond with maturity date T in the
Vasiček model

P (t, T ) = E
[
e−

∫ T
t r(s)ds

∣∣∣Ft], (1)

where the short rate (r(t))t≥0 is modeled by the OU-process1

r(t) = r0e
βt +

b

β
(eβt − 1) + σeβt

∫ t

0

e−βsdWs, t ≥ 0, (2)

for constants b, σ ∈ R, β < 0 and r0 ∈ R.

3. Consider again the Vasiček model as in Ex-4-2.

a) Determine term-structure equation associated to it, i.e, find the partial differential
equation such that the process defined by

M(t) = E
[
e−

∫ T
0 r(s)ds

∣∣∣Ft] = F (t, r(t);T )e−
∫ t
0 r(s)ds, 0 ≤ t ≤ T (3)

is a local martingale.

b) Assuming the process M defined in (3) is a true martingale, solve the term-
structure equation for F (T, r(T );T ) = 1 associated to the Vasiček model. Mo-
reover, determine the associated bond prices by using

P (t, T ) = F (t, r(t);T ).

Compare your results with the bond prices (1) obtained in Ex 4-2.

c) Show that the process M is indeed a true martingale.

4. Matlab-Exercise The goal of this exercise is numerically compute the time zero bond
price in the Vasiček model

P (0, T ) = E
[
e−

∫ T
0 rsds

]
by using three different methods.

1Recall from the Ex 2-3 that the Ornstein-Uhlenbeck process r satisfies

dr(t) = −β
(
− b
β
− r(t)

)
dt+ σdW (t), r(0) = r0.

Siehe nächstes Blatt!



a) Analytical Approach: In Ex 4-3 we have seen that P (0, T ) can written as

P (0, T ) = F (0, r0;T ) = exp(−A(T )−B(T )r0),

with

A(T ) =
σ2(4eβT − e2βT − 2βT − 3)

4β3
+ b

eβT − 1− βT
β2

,

B(T ) =
1

β

(
eβT − 1

)
.

b) Monte Carlo Approach: In Ex 4-2 it was shown that the integral
∫ T
0
rsds is nor-

mally distributed with mean µ0 and variance Σ2
0 where

µ0 =
r0
β

(eβT − 1) +
b

β2
(eβT − 1− βT ),

Σ2
0 =

σ2(−4eβT + e2βT + 2βT + 3)

2β3
.

Recall that the essential idea of Monte Carlo simulation is that – by the law of
large numbers – for large N ∈ N and an i.i.d. sequence X1, . . . , XN having the
distribution of e−

∫ T
0 rsds we have

P (0, T ) ≈ 1

N

N∑
k=1

Xk.

c) Euler-Maruyama Approach: An alternative method is to simulate the short ra-
te r explicitly using Euler-Maruyama scheme and apply the trapezoidal rule to
compute the integral

∫ T
0
rsds, i.e.,∫ T

0

rsds ≈
M∑
i=1

(ti − ti−1)
rti−1

+ rti
2

,

where we consider the equidistant decomposition {0 = t0 < . . . < tM = T} of
the interval [0, T ] given by

ti :=
i

M
T, i = 0, . . . ,M.

Finally, we again use Monte-Carlo simulation to approximate the expectation.
Implement these three methods in Matlab and compare your results for the follo-
wing set of parameters

b = 0.08, β = −0.86, σ = 0.04, r0 = 0.08, T = 10,M = 103, N = 105.

Hint: The command for trapezoidal rule in Matlab is trapz.


