Interest Rate Theory Exercise Sheet 4

1. Let us consider the general short rate model introduced in the lecture. That is, we assume,
(i) the short rate follows an Itô process

$$
d r(t)=b(t) d t+\sigma(t) d W_{t}
$$

determining the money-market account $B(t)=\exp \left(\int_{0}^{t} r(s) d s\right)$
(ii) no arbitrage: there exists an EMM \mathbb{Q} of the form

$$
\frac{d \mathbb{Q}}{d \mathbb{P}}=\mathcal{E}(\gamma \bullet W)_{\infty}
$$

such that the discounted bond prices $P(t, T) / B(t), t \leq T$ are \mathbb{Q} - martingales and $P(T, T)=1$ for all $T>0$.

Under the above assumptions show that
a) the process r satisfies under \mathbb{Q}

$$
d r(t)=(b(t)+\sigma(t) \gamma(t)) d t+\sigma(t) d W^{\mathbb{Q}}(t)
$$

where $W^{\mathbb{Q}}$ denotes a \mathbb{Q} - Brownian motion.
b) If the filtration $\left(\mathcal{F}_{t}\right)$ is generated by the Brownian motion W, for any $T>0$ there exists a process $v(t, T) \in \mathcal{L}$ such that

$$
\frac{d P(t, T)}{P(t, T)}=r(t) d t+v(t, T) d W^{\mathbb{Q}}(t)
$$

c) Conclude that

$$
\frac{P(t, T)}{B(t)}=P(0, T) \mathcal{E}\left(v(\cdot, T) \bullet W^{\mathbb{Q}}\right)_{t}
$$

2. Compute directly the price at time t of a zero coupon bond with maturity date T in the Vasiček model

$$
\begin{equation*}
P(t, T)=\mathbb{E}\left[e^{-\int_{t}^{T} r(s) d s} \mid \mathcal{F}_{t}\right] \tag{1}
\end{equation*}
$$

where the short rate $(r(t))_{t \geq 0}$ is modeled by the OU-process ${ }^{1}$

$$
\begin{equation*}
r(t)=r_{0} e^{\beta t}+\frac{b}{\beta}\left(e^{\beta t}-1\right)+\sigma e^{\beta t} \int_{0}^{t} e^{-\beta s} d W_{s}, \quad t \geq 0 \tag{2}
\end{equation*}
$$

for constants $b, \sigma \in \mathbb{R}, \beta<0$ and $r_{0} \in \mathbb{R}$.
3. Consider again the Vasiček model as in Ex-4-2.
a) Determine term-structure equation associated to it, i.e, find the partial differential equation such that the process defined by

$$
\begin{equation*}
M(t)=\mathbb{E}\left[e^{-\int_{0}^{T} r(s) d s} \mid \mathcal{F}_{t}\right]=F(t, r(t) ; T) e^{-\int_{0}^{t} r(s) d s}, \quad 0 \leq t \leq T \tag{3}
\end{equation*}
$$

is a local martingale.
b) Assuming the process M defined in (3) is a true martingale, solve the termstructure equation for $F(T, r(T) ; T)=1$ associated to the Vasiček model. Moreover, determine the associated bond prices by using

$$
P(t, T)=F(t, r(t) ; T)
$$

Compare your results with the bond prices (1) obtained in Ex 4-2.
c) Show that the process M is indeed a true martingale.
4. Matlab-Exercise The goal of this exercise is numerically compute the time zero bond price in the Vasiček model

$$
P(0, T)=\mathbb{E}\left[e^{-\int_{0}^{T} r_{s} d s}\right]
$$

by using three different methods.

[^0]a) Analytical Approach: In Ex 4-3 we have seen that $P(0, T)$ can written as
$$
P(0, T)=F\left(0, r_{0} ; T\right)=\exp \left(-A(T)-B(T) r_{0}\right)
$$
with
\[

$$
\begin{aligned}
& A(T)=\frac{\sigma^{2}\left(4 e^{\beta T}-e^{2 \beta T}-2 \beta T-3\right)}{4 \beta^{3}}+b \frac{e^{\beta T}-1-\beta T}{\beta^{2}} \\
& B(T)=\frac{1}{\beta}\left(e^{\beta T}-1\right)
\end{aligned}
$$
\]

b) Monte Carlo Approach: In Ex 4-2 it was shown that the integral $\int_{0}^{T} r_{s} d s$ is normally distributed with mean μ_{0} and variance Σ_{0}^{2} where

$$
\begin{aligned}
\mu_{0} & =\frac{r_{0}}{\beta}\left(e^{\beta T}-1\right)+\frac{b}{\beta^{2}}\left(e^{\beta T}-1-\beta T\right), \\
\Sigma_{0}^{2} & =\frac{\sigma^{2}\left(-4 e^{\beta T}+e^{2 \beta T}+2 \beta T+3\right)}{2 \beta^{3}}
\end{aligned}
$$

Recall that the essential idea of Monte Carlo simulation is that - by the law of large numbers - for large $N \in \mathbb{N}$ and an i.i.d. sequence X_{1}, \ldots, X_{N} having the distribution of $e^{-\int_{0}^{T} r_{s} d s}$ we have

$$
P(0, T) \approx \frac{1}{N} \sum_{k=1}^{N} X_{k}
$$

c) Euler-Maruyama Approach: An alternative method is to simulate the short rate r explicitly using Euler-Maruyama scheme and apply the trapezoidal rule to compute the integral $\int_{0}^{T} r_{s} d s$, i.e.,

$$
\int_{0}^{T} r_{s} d s \approx \sum_{i=1}^{M}\left(t_{i}-t_{i-1}\right) \frac{r_{t_{i-1}}+r_{t_{i}}}{2},
$$

where we consider the equidistant decomposition $\left\{0=t_{0}<\ldots<t_{M}=T\right\}$ of the interval $[0, T]$ given by

$$
t_{i}:=\frac{i}{M} T, \quad i=0, \ldots, M
$$

Finally, we again use Monte-Carlo simulation to approximate the expectation. Implement these three methods in Matlab and compare your results for the following set of parameters

$$
b=0.08, \beta=-0.86, \sigma=0.04, r_{0}=0.08, T=10, M=10^{3}, N=10^{5} .
$$

Hint: The command for trapezoidal rule in Matlab is trapz.

[^0]: ${ }^{1}$ Recall from the Ex 2-3 that the Ornstein-Uhlenbeck process r satisfies

 $$
 d r(t)=-\beta\left(-\frac{b}{\beta}-r(t)\right) d t+\sigma d W(t), \quad r(0)=r_{0}
 $$

