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1. Let us consider the general short rate model introduced in the lecture. That is, we
assume,

(1) the short rate follows an Itd process
dr(t) = b(t)dt + o(t)dW,

determining the money-market account B(t) = exp ( fg r(s)ds)

(i1) no arbitrage: there exists an EMM Q of the form

dQ

P =E&(ve W)

such that the discounted bond prices P(¢,7)/B(t),t < T are Q— martingales
and P(7,7T) = 1forall T > 0.

Under the above assumptions show that
a) the process r satisfies under Q
dr(t) = (b(t) + o (t)y(t)) dt + o (t)dWR(1),
where W® denotes a Q— Brownian motion.

b) If the filtration (F;) is generated by the Brownian motion W, for any 7" > 0 there
exists a process v(t,T") € L such that

dP(t,T)
. = 0+ ot TIawee),
¢) Conclude that P(.T)
t,
B(t) P0,T)E (v(-,T) e W®),.

Bitte wenden!



2. Compute directly the price at time ¢ of a zero coupon bond with maturity date 7" in the
Vasic¢ek model

P(t,T)=E [e‘ J7 r(s)ds

7. ()

where the short rate (7(£))s>o is modeled by the OU-process!

t
r(t) = roe’t + %(eﬂt —1)+ O'@Bt/ e P aw,, t>0, (2)
0

for constants b, € R, f < 0 and ry € R.

3. Consider again the Vasicek model as in Ex-4-2.

a) Determine rerm-structure equation associated to it, i.e, find the partial differential
equation such that the process defined by

M(t) = E [e~ o r(es

]—"t} — F(t,r(t);T)e hor@d  g<t<T (3)

is a local martingale.

b) Assuming the process M defined in (3) is a true martingale, solve the term-
structure equation for F(T,r(T'); T) = 1 associated to the Vasi¢ek model. Mo-
reover, determine the associated bond prices by using

P(t,T) = F(t,rt);T).
Compare your results with the bond prices (1) obtained in Ex 4-2.

¢) Show that the process M is indeed a true martingale.

4. Matlab-Exercise The goal of this exercise is numerically compute the time zero bond
price in the Vasi¢ek model

P(0,T) =E ¢~ fo "]

by using three different methods.

'Recall from the Ex 2-3 that the Ornstein-Uhlenbeck process 7 satisfies

dr(t) = —f (_Z - r(t)) dt + odW (t), (0) = ro.

Siehe nachstes Blatt!



a)

b)

c)

Analytical Approach: In Ex 4-3 we have seen that P(0,T") can written as
P(0,T) = F(0,70; T) = exp(=A(T) — B(T)ro),
with
o2 (4ePT — T — 28T — 3)

BT 1 _ 8T
A(T) = I _|_b€ - B 7

Monte Carlo Approach: In Ex 4-2 it was shown that the integral fOT rds is nor-
mally distributed with mean /1 and variance Y2 where

r b
po == (" = 1)+ F (" —1-8T),
s  0X(—4e’T + T + 28T + 3)
ZO — .
233
Recall that the essential idea of Monte Carlo simulation is that — by the law of
large numbers — for large N € N and an i.i.d. sequence X1, ..., Xy having the

. . . J— T
distribution of e~ Jo s we have

N
1
P(O,T) ~ > X

k=1

Euler-Maruyama Approach: An alternative method is to simulate the short ra-
te r explicitly using Euler-Maruyama scheme and apply the trapezoidal rule to
compute the integral fOT ryds, i.e.,

T M
rti, + ,rti
/0 ?”SdS% Z(tz—tlfl)lT,
=1
where we consider the equidistant decomposition {0 =ty < ... < t)y = T} of

the interval [0, T'] given by

ti::%T, i=0,.... M.

Finally, we again use Monte-Carlo simulation to approximate the expectation.
Implement these three methods in Matlab and compare your results for the follo-
wing set of parameters

b=0.08,8=—-0.86,0 = 0.04,rp = 0.08,7 = 10, M = 10>, N = 10°.

Hint: The command for trapezoidal rule in Matlab is trapz.



