Coordinator Ren Liu

Interest Rate Theory Exercise Sheet 6

- 1. The goal of this exercise is to verify the *Dybvig-Ingersoll-Ross* Theorem for some specific models.
 - a) Show that the Vasiček short-rate model

$$dr(t) = (b + \beta r(t))dt + \sigma dW^*(t)$$

admits a long rate $R_{\infty}(t) = \lim_{T \to \infty} \frac{1}{T-t} \int_{t}^{T} f(t,s) ds$ if $\beta < 0$. Conclude that

$$\lim_{x \to \infty} f(t, t+x) = -\left(\frac{b}{\beta} + \frac{\sigma^2}{2\beta^2}\right)$$

and verify that $R_{\infty}(t)$ is non-decreasing.

b) Show that the long rate $R_{\infty}(t)$ always exists in the CIR model

$$dr(t) = (b + \beta r(t))dt + \sigma \sqrt{r(t)}dW^*(t),$$

and verify that it is non-decreasing.

c) Determine the long rate $R_{\infty}(t)$ in a one-dimensional HJM model with volatility process given by

$$\sigma(t,T) = \frac{1}{(1+T-t)^{1/2}}.$$

Show that it is strictly increasing.

2. Consider a bond market where the interest rate dynamics are given by the Ho-Lee short-rate model

$$dr(t) = b(t)dt + \sigma dW^*(t).$$

a) Derive a formula for the price c(0, T, S, K) of a European call option at time t = 0 with strike price K and exercise date T on an underlying S-bond, where T < S.

Bitte wenden!

- **b**) Derive the corresponding formula for European put option prices p(0, T, S, K) in the above setting.
- 3. Matlab Exercise Consider the Vasiček short-rate model

$$dr(t) = (b + \beta r(t))dt + \sigma dW^*(t).$$

In this setting, the price at time t = 0 of a European put option p(0, T, S, K) on a S-bond with expire date T < S and strike price K is

$$p(0,T,S,K) = KP(0,T)\Phi(-d_2) - P(0,S)\Phi(-d_1),$$

with

$$d_{1,2} = \frac{\log\left(\frac{P(0,S)}{KP(0,T)}\right) \pm \frac{1}{2} \int_0^T \sigma_{T,S}^2(s) ds}{\sqrt{\int_0^T \sigma_{T,S}^2(s) ds}},$$

where

$$\sigma_{T,S}(s) = \int_T^S \sigma(s, u) du.$$

a) Write a function *capvasicekatm*($b, \beta, \sigma, r_0, T_0, \delta, T_{cap}$) which computes the price of ATM caps under the Vasiček short-rate model. Here, T_0 denotes the first reset date of the cap, $\delta = T_i - T_{i-1}$ and T_{cap} is the maturity of the cap.

Hint: First identify $\sigma(s, u)$ using Ex 5-2. In a second step relate the cash flow of a caplet to the cash flow of the put option (cf. Ex 1-2).

b) For the following parameters

$$b = 0.0774, \beta = -0.86, r(0) = 0.08$$

write a function *fittedsigma* which minimizes the error between a given vector of the market prices P and the price determined by Ex 6-3a) within the interval $\sigma \in [10^{-3}, 1]$. That is, the output σ_* of the function *fittedsigma* is determined by

$$\sigma_* = argmin_{\sigma \in [10^{-3}, 1]} \sum_{i=1}^k (p_i - CVA_i(\sigma))^2,$$

where $P = (p_1, \dots, p_k)$ is a given price vector and CVA_i denotes the calculated cap prices from Ex 6-3a). Test your functions for the following set of prices

Siehe nächstes Blatt!

ATM cap price
0.00215686
0.00567477
0.00907115
0.0121906
0.01503
0.017613
0.0199647
0.0221081
0.025847
0.028963
0.0326962
0.0370565
0.0416089

The maturities in the above table are given in years from today ($t_0 = 0$), the first reset date of each cap is $T_0 = 1/4$. All future dates $T_0 < \cdots < T_n$ are equidistant, i.e., $T_i - T_{i-1} \equiv 1/4$ for all $i = 1, \cdots, 119$. The maturity of the last cap is $T_{119} = 30$.

- **4.** Let $\delta > 0$ and $T_m = m\delta$ with $m = 0, \dots, M \in \mathbb{N}$. We assume that
 - For every m = 1, ..., M 1 there exists a real-valued deterministic bounded measurable function $\lambda(t, T_m), t \in [0, T_m]$.
 - There is a positive, nonincreasing initial term structure

$$P(0,T_m), \quad m=0,\ldots,M,$$

and hence nonnegative initial LIBOR rates

$$L(0,T_m) = \frac{1}{\delta} \left(\frac{P(0,T_m)}{P(0,T_{m+1})} - 1 \right), \quad m = 0, \dots, M - 1.$$

We consider the LIBOR market model from the lecture, that is, on the filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0, T_M]}, \mathbb{Q}^{T_M})$ there exist equivalent probability measures $(\mathbb{Q}^{T_m})_{m=1,\dots,M-1}$ and \mathbb{Q}^{T_m} -Brownian motions $(W^{T_m})_{m=1,\dots,M}$ such that for each $m = 0, \dots, M-1$ (under the measure $\mathbb{Q}^{T_{m+1}}$) we have

$$L(t, T_m) = L(0, T_m) + \int_0^t L(s, T_m)\lambda(s, T_m)dW_s^{T_{m+1}}, \quad t \in [0, T_m].$$

Now, let $1 \le m \le M$ and $t \in [0, T_{m-1}]$. It can be shown¹ that for the time t price of a caplet with reset date T_{m-1} , settlement date T_m and strike rate \varkappa is given by the

Bitte wenden!

¹Please verify this result if it is not clear to you.

following Black-formula

$$Cpl(t; T_{m-1}, T_m) = \delta P(t, T_m) (L(t, T_{m-1}) \Phi(d_1(m; t)) - \varkappa \Phi(d_2(m; t))),$$

where we have set

$$d_{1,2}(m;t) = \frac{\log\left(\frac{L(t,T_{m-1})}{\varkappa}\right) \pm \frac{1}{2} \int_{t}^{T_{m-1}} \lambda^{2}(s,T) ds}{\left(\int_{t}^{T_{m-1}} \lambda^{2}(s,T_{m-1}) ds\right)^{1/2}}.$$

Under the assumption that $\lambda(t,T_m)=\lambda$ is constant. Compute the caplet price at time t=0

- by using Black's formula,
- by a Monte-Carlo algorithm (N=10⁶).

You may test your results with the parameters

$$\delta = 1/4, \quad m = 7, \quad \lambda = 0.1, \quad \varkappa = 0.01,$$

 $L(0, T_{m-1}) = 0.09, \quad P(0, T_m) = 0.85, \quad N = 10^6.$