Coordinator Ren Liu

Interest Rate Theory Exercise Sheet 1

1. Consider a bond market $(P(t,T))_{(t \le T)}$ with P(T,T) = 1 and P(t,T) > 0 for $t \le T \le S$. Let

$$F(t;T,S) := \frac{1}{S-T} \left(\frac{P(t,T)}{P(t,S)} - 1 \right)$$

denote the simple forward rate and let F(t,T) := F(t;t,T) denote the simple spot rate as in the lecture. Show that

P(t, S)F(t; T, S)

is the fair value at time t of a contract paying F(T, S) at time S, by constructing a self-financing portfolio with value P(t, S)F(t; T, S) at time t and value F(T, S) at time S.

2. Let us consider an interest rate *cap* which is determined by a number of future dates

$$0 < T_0 < T_1 < \ldots < T_n, \qquad T_i - T_{i-1} = \delta,$$

a fixed *cap rate* $\varkappa > 0$, and a nominal value N which is assumed to be 1. Show that the cash flow of

$$\delta(F(T_{i-1},T_i)-\varkappa)^+$$

at time T_i is equivalent to $(1 + \delta \varkappa)$ times the cash flow at date T_{i-1} of a put option on a T_i -bond with strike price $1/(1 + \delta \varkappa)$

$$(1+\delta\varkappa)\left(\frac{1}{1+\delta\varkappa}-P(T_{i-1},T_i)\right)^+.$$

3. Let $(\Omega, \mathbb{F}, \mathbb{Q})$ be a probability space with a filtration $\mathbb{F} = (\mathcal{F}_t)_{t \ge 0}$ satisfying the usual conditions. Let $X = (X_t)_{t \in \mathbb{Z}}$ be an AR(1) process, i.e.,

$$X_t = c + \varphi \cdot X_{t-1} + \varepsilon_t, \tag{1}$$

where $c, \varphi \in \mathbb{R}$ are real constants and ε_t are i.i.d. (and independent of all $X_s, s < t$) Gaussian random variable with zero mean and constant variance σ_{ε}^2 .

Bitte wenden!

a) Show that AR(1) process X is stationary and has finite second moment if and only if $|\varphi| < 1$.

Assume now $|\varphi| < 1$.

b) Verify that

$$\mathbb{E}[X_t] = \frac{c}{1 - \varphi}, \qquad Var[X_t] = \frac{\sigma_{\varepsilon}^2}{1 - \varphi^2}.$$

c) Let Y be geometric Brownian motion, i.e.,

$$dY_t = Y_t(\mu dt + \sigma dW_t), \qquad Y_0 = y_t$$

where $\mu \in \mathbb{R}, \sigma > 0$ are real constants and W denotes (\mathbb{Q}, \mathbb{F}) Brownian motion. Is Y stationary?

- 4. Incremental simulation of sample path in Matlab Let T = 1, $W = (W_t)_{t \ge 0}$ be a (\mathbb{Q}, \mathbb{F}) Brownian motion, and $N = (N_t)_{t \ge 0}$ a (\mathbb{Q}, \mathbb{F}) Poisson process with intensity parameter $\lambda = 2$. Consider the following processes
 - (a) drifted Brownian motion $X_t^{(a)} = 1 + 2t + 2W_t$
 - (b) **AR(1) process** $X^{(b)}$ as in previous question with $c = 0.5, \varphi = 0.6, \sigma_{\varepsilon}^2 = 0.2$ and $X_0^{(b)} = 0.1$
 - (c*) **Poisson Process** $X^{(c)} = N$ with intensity $\lambda = 2$
 - (d*) compound Poisson process

$$X_t^{(d)} = \sum_{i=1}^{N_t} Z_i$$

with i.i.d random variables Z_i . We further assume that

$$Z_i = \begin{cases} 1, & p = 0.5, \\ -1, & p = 0.5. \end{cases}$$

- (i) Simulate N = 10 sample paths of the processes $X^{(a)}, \dots, X^{(d)}$ using an equidistant time grid, i.e., $t_i = T \cdot i/M, i = 0, \dots, M = 10^3$.
- (ii) Compute $\mathbb{E}[e^{X_T^{(a)}}], \mathbb{E}[X_T^{(b)}], \mathbb{E}[e^{X_T^{(c)}}], \mathbb{E}[e^{X_T^{(d)}}]$
 - explicitly
 - using Monte-Carlo simulation with $N = 10^5$ sample paths

Siehe nächstes Blatt!

(iii*) Compute the 95% confident intervals using CLT

The *-marked questions are primarily meant for students who wish to have stronger and deeper understanding of the subject and are not part of the regular exercises.

5. Calibrate the forward curve

$$\mathbb{R}_+ \ni x \mapsto f(t_0, t_0 + x) = \phi(x) = \phi(x; z)$$

to a given set of bond prices $P = (p_1, \cdots, p_n)^T$ using the Nelson-Siegel family

$$\phi_{NS}(x;z) = z_1 + (z_2 + z_3 x)e^{-z_4 x}.$$

That is, find $z_* \in \mathbb{R}^4$ such that

$$||P - C \cdot d(z)|| \to \min !$$

where C is the cash flow matrix (cf. Filipovic [Section 3.2.1]) and the implied discount rate is T_{T}

$$d_i(z) = e^{-\int_0^{T_i} \phi_{NS}(u;z)du}$$

for a payment tenor $0 < T_1 < \cdots < T_N$. Use the numbers in [Filipovic, Table 3.2] (the first three bonds) and plot the calibrated forward curve. Note that the day count convention used is actual/365.

Hint: Use the command *lsqcurvefit* in Matlab with initial value $z_0 = (0.05, 0.05, 0.05, 0.05)$