Solutions Exercise Sheet 1

Exercise 1

Let G_{1} and G_{2} be topological groups. Show that a homomorphism $h: G_{1} \rightarrow G_{2}$ is continuous if and only if it is continuous at the identity $e \in G_{1}$.

SOLUTION:

One direction is trivial, namely, if h is continuous then it's obviously continuous at e.

Now for the reverse direction. Assume h is continuous at e. Choose some open set $U \subset G_{2}$. We want to show that its preimage under h is open also. If $h^{-1}(U)=\emptyset$ we are done. If not then choose some $f(x) \in U$ with $x \in G_{1}$. We have that:

$$
h^{-1}(U)=x h^{-1}\left(U_{e}\right)
$$

where $U_{e}=h\left(x^{-1}\right) U$. To see this, we observe the following sequence of equivalences: $m \in h^{-1}(U)<=>h(m) \in U<=>h\left(x^{-1} m\right)=h\left(x^{-1}\right) h(m) \in h\left(x^{-1}\right) U=$ $U_{e}<=>x^{-1} m \in h^{-1}\left(U_{e}\right)<=>m \in x h^{-1}\left(U_{e}\right)$. Hence $h^{-1}(U)=x h^{-1}\left(U_{e}\right)$. Since translation functions on topological groups are homeomorphisms we have that U_{e} is open in G_{2} and contains $h(e)=e_{G_{2}}$, hence $h^{-1}\left(U_{e}\right)$ is open in G_{1} by hypothesis. Thus $x h^{-1}\left(U_{e}\right)=h^{-1}(U)$ is open and we are done.

Exercise 2

(a) Let Λ be a closed subgroup of $(\mathbb{R},+)$. Show that either
(i) $\Lambda=\{0\}$,
(ii) $\Lambda=\alpha \mathbb{Z}$ for some $\alpha \in \mathbb{R}_{>0}$, or
(iii) $\Lambda=\mathbb{R}$.

SOLUTION:

If $\Lambda=0$ there is nothing to show. Otherwise, consider $\Lambda_{+}=\Lambda \cap \mathbb{R}_{>0}$ and $\Lambda_{-}=\Lambda \cap \mathbb{R}_{<0}=-\Lambda_{+}$. Let $\alpha=\inf \left(\Lambda_{+}\right)$. Since Λ is closed, $\alpha \in \Lambda$.
If $\alpha>0$, we claim $\Lambda=\alpha \mathbb{Z}$. Obviously it's enough to show $\Lambda_{+}=\alpha \mathbb{Z}_{>0}$. Pick $x>0, x \in \Lambda$. By construction $x \geq \alpha$. Since $n \alpha$ goes to ∞ as n goes to ∞, we get that there exists a maximal $m \in \mathbb{Z}_{>0}$ such that $m \alpha \leq x$ and $(m+1) \alpha>x$. But since $\alpha \in \Lambda$, we get that $m \alpha \in \Lambda$ and so $x-m \alpha \in \Lambda$. Since $0 \leq x-m \alpha<\alpha$, we conclude by minimality of α that $0=x-m \alpha$ (otherwise it would be a positive element of Λ strictly smaller than α). Hence, $\Lambda_{+} \subseteq \alpha \mathbb{Z}_{>0}$ and obviously $\alpha \mathbb{Z}_{>0} \subseteq \Lambda_{+}$. Thus, conclusion follows.
If $\alpha=0$, we claim $\Lambda=\mathbb{R}$. Obviously it's enough to show $\Lambda_{+}=\mathbb{R}_{>0}$. Pick any $x>0, x \in \mathbb{R}$. Pick any $\varepsilon>0$. Set $\varepsilon_{x}=\min (\varepsilon, x)>0$. Since $\alpha=0$ there exists $y \in \Lambda$ with $0<y<\varepsilon_{x}$. As before, choose m the maximal natural number for which $m y \leq x<(m+1) y$. Set $y_{1}=m y$. As before $y_{1} \in \Lambda$ and $0 \leq x-y_{1}<y<\varepsilon_{x} \leq \varepsilon$. So for every $\varepsilon>0$ we can find a point $y_{1} \in \Lambda$ at most ε away from x. But this means that x is a limit point of Λ and since Λ is closed, the conclusion follows.

ETH Zürich	D-MATH	Introduction to Lie Groups
Prof. Dr. Urs Lang	Alexandru Sava	October 8, 2014

(b) How many subgroups of $(\mathbb{R},+)$ are there?

SOLUTION:
Let M be the set of all subgroups of $\mathbb{R} . \mathbb{R}$ is a \mathbb{Q}-vector space in a natural way. Set B to be a \mathbb{Q}-basis of \mathbb{R}. Define the function $s: 2^{B} \longrightarrow M$ by mapping $S \mapsto \operatorname{span}(S)$. Notice that this is well defined since every \mathbb{Q} subspace of \mathbb{R} is also a subgroup. Moreover, this function is injective since B is a basis. Hence $\left|2^{B}\right| \leq|M|$. Obviously $|M| \leq\left|2^{\mathbb{R}}\right|$ since every subgroup is also a subset.
Let's show $|B|=|\mathbb{R}|$.
For $i \in \mathbb{N}$ define $X_{i}=\left\{x \in \mathbb{R}: x=\lambda_{1} x_{1}+\ldots+\lambda_{i} x_{i}\right.$ for some $\lambda_{i} \in \mathbb{Q}_{\neq 0}$ and $\left.x_{i} \in B\right\}$ with $X_{0}=0$. It is easy to see that X_{i} form a partition of R. Moreover, it is also easy to see that $\left|X_{i}\right|=\mid \mathbb{Q} \times \ldots \times \mathbb{Q} \times B \times \ldots \times B$ where \mathbb{Q} is multiplied with itself i times and the same with B.

We will invoke the following standard lemma in set theory. if X, Y are two sets such that X is countable and Y is infinite then $|X \times Y|=|Y|$ and $|Y \times Y|=|Y|$.
Using the lemma we get that $\left|X_{i}\right|=|B|$. Since R is a countable disjoint union of the X_{i} s we get that $|R|=|\mathbb{N} \times B|=|B|$.
We conclude that $|M|=2^{\mathbb{R}}$

Exercise 3

Let X be a compact Hausdorff topological space. Show that $\operatorname{Homeo}(X)$ is a topological group when equipped with the compact-open topology.

SOLUTION:

Set $G=\operatorname{Homeo}(X)$ and let $m: G \times G \longrightarrow G$ be the multiplication (composition) map and $i: G \longrightarrow G$ be the "taking inverse" map. We have to show that these are continuous with respect to the compact-open topology.

Notice that $i^{-1}\left(V(K, U)=V\left(K^{c}, U^{c}\right)\right.$ (K compact and U open). Indeed, we have the following sequence of equivalences: $f \in i^{-1}(V(K, U))<=>i(f) \in$ $V(K, U)<=>f^{-1} \in V(K, U)<=>f^{-1}(K) \subset U<=>K \subset f(U)<=>$ $f(U)^{c} \subset K^{c}<=>f\left(U^{c}\right) \subset K^{c}<=>f \in V\left(U^{c}, K^{c}\right)$. In this sequence we have used the fact that f is bijective is order to get that complements of images are images of complements. The fact that X is compact and Hausdorff implies that in X compactness is the same as closedness. Hence K^{c} is open and U^{c} is compact. Thus indeed i is continuous.

Let's show that m is continuous. It is enough to show that $m^{-1}(V(K, U))$ is open for every compact K and open U. If this preimage is empty then we are done. If it is not, it is enough to show that for every point $y=(f, g)$ in this preimage there exists an open set $V_{y} \subset m^{-1}(V(K, U))$ with $y \in V_{y}$. Then it will follow trivially that the preimage is the union of such V_{y} and thus open.

So pick $y=(f, g) \in m^{-1}(V(K, U))$. We have that $f(g(K)) \subset U$. Hence $g(K) \subset f^{-1}(U)$. Recall that since X is compact and Hausdorff, closedness and compactness are equivalent. In particular $g(K)$ is closed. Since f is a homeomorphism, we have that $f^{-1}\left(U^{c}\right)$ is also closed and also disjoint from $g(K)$. Again, since X is compact and Hausdorff, it is also normal. Hence, we can separate

ETH Zürich	D-MATH	Introduction to Lie Groups
Prof. Dr. Urs Lang	Alexandru Sava	October 8, 2014

$g(K)$ and $f^{-1}\left(U^{c}\right)$ with two disjoint open sets U_{1}, U_{2} such that $g(K) \subset U_{1}$ and $f^{-1}\left(U^{c}\right) \subset U_{2}$. Set $K_{1}=U_{2}^{c}$. We have that

$$
g(K) \subset U_{1} \subset K_{1} \subset f^{-1}(U)
$$

Notice that K_{1} is closed and thus compact. Also notice that by construction $f \in V\left(K_{1}, U\right)$ and $g \in V\left(K, U_{1}\right)$. So $(f, g) \in V\left(K_{1}, U\right) \times V\left(K, U_{1}\right)$. Set $V_{(f, g)}=$ $V\left(K_{1}, U\right) \times V\left(K, U_{1}\right)$ and notice that this set is open. Moreover, if $\left(f^{\prime}, g^{\prime}\right) \in V_{(g, h)}$ then $g^{\prime} \in V\left(K, U_{1}\right)$ and $f^{\prime} \in V\left(K_{1}, U\right)$. Hence $f^{\prime}\left(K_{1}\right) \subset U$ and $g^{\prime}(K) \subset U_{1}$. This implies that $f^{\prime}\left(g^{\prime}(K)\right) \subset f^{\prime}\left(U_{1}\right) \subset f^{\prime}\left(K_{1}\right) \subset U$. Thus $V_{(f, g)} \subset m^{-1}(V(K, U))$ and we are done.

Exercise 4

Show that $\operatorname{Homeo}\left(\mathcal{S}^{1}\right)$ with the compact-open topology is not locally compact.

SOLUTION:

Set $G=\operatorname{Homeo}\left(\mathcal{S}^{1}\right)$. It is enough to show that $i d \in G$ has no compact neighborhood. Assume the contrary. Then there exists K compact and U open with $K \subset U$ such that $V(K, U) \subset \mathcal{K}$ with \mathcal{K} compact. Since \mathcal{S}^{1} is a metric space, it follows that the compact-open topology on G coincides with the topology given by compact convergence, or (equivalently) the topology induced by the uniform metric on compact subsets of \mathcal{S}^{1}. Since \mathcal{S}^{1} is compact itself, this gives that the compact topology on G is given by the uniform metric

$$
d_{u}(f, g)=\sup _{x \in \mathcal{S}^{1}} d(f(x), g(x))
$$

where d is the standard metric on \mathcal{S}^{1}.
Because our goal is to show that id has no compact neighborhood, we want construct small linear perturbations of $i d$. For simplicity we identify \mathcal{S}^{1} with the interval $[0,1]$ with the identification $0 \sim 1$. Choose a sequence $1>\varepsilon_{n}>0$ such that ε_{n} converges to 0 . Define the following sequence of functions:

$$
f_{n}(x)= \begin{cases}x+1-\frac{\varepsilon_{n}}{2} & \text { for } 0 \leq x \leq \frac{\varepsilon_{n}}{2} \\ 2 x-\varepsilon_{n} & \text { for } \frac{\varepsilon_{n}}{2} \leq x \leq \varepsilon_{n} \\ x & \text { for } \varepsilon_{n} \leq x \leq 1-\varepsilon_{n} \\ \frac{1}{2}\left(x+1-\varepsilon_{n}\right) & \text { for } 1-\varepsilon_{n} \leq x \leq 1\end{cases}
$$

It is easy to check that f_{n} are well defined homeomorphisms of \mathcal{S}^{1}. we distinguish two cases.
(a) $K=\mathcal{S}^{1}$ in which case $U=K=\mathcal{S}^{1}$ since $K \subset U \subset \mathcal{S}^{1}$. But then $V(K, U)=G$ and $\mathcal{K}=G$ we get that G is compact so f_{n} must containt a converging subsequence with respect to the d_{u} metric.
(b) $K \neq \mathcal{S}^{1}$ in which case, since K is closed, there exists a point x_{0} and an open interval around x_{0} disjoint of K. After translation by x_{0} of K, U and of the f_{n} s we may assume $x_{0}=0$. But notice that the $f_{n}=i d$ on the interval $\left[\varepsilon_{n}, 1-\varepsilon_{n}\right]$. So for n big enough, the $f_{n} \mathrm{~s}$ land in $V(K, U)$ and thus in \mathcal{K}. So again we get that the f_{n} s must contain a converging subsequence with respect to the d_{u} norm.

In either case we obtain a converging subsequence of the f_{n} s. Pick such a subsequence and denote with f its limit. It is obvious that f_{n} must converge to f pointwise also. But the $f_{n} \mathrm{~s}$ converge pointwise to $i d$. Since X is Hausdorff, we get that $f=i d$. However notice that

$$
d_{u}\left(f_{n}, i d\right) \geq d\left(f_{n}(0), 0\right)=1-\frac{\varepsilon}{2}>\frac{1}{2}
$$

Hence no subsequence of the $f_{n} \mathrm{~s}$ can converge uniformly to $i d$. Thus we reached a contradiction that arose from the fact that we assumed G to be locally compact. The conclusion follows.

