Solutions Exercise Sheet 1

Exercise 1

Let G_1 and G_2 be topological groups. Show that a homomorphism $h: G_1 \to G_2$ is continuous if and only if it is continuous at the identity $e \in G_1$.

SOLUTION:

One direction is trivial, namely, if h is continuous then it's obviously continuous at e.

Now for the reverse direction. Assume h is continuous at e. Choose some open set $U \subset G_2$. We want to show that its preimage under h is open also. If $h^{-1}(U) = \emptyset$ we are done. If not then choose some $f(x) \in U$ with $x \in G_1$. We have that:

$$h^{-1}(U) = xh^{-1}(U_e)$$

where $U_e = h(x^{-1})U$. To see this, we observe the following sequence of equivalences: $m \in h^{-1}(U) \ll h(m) \in U \ll h(x^{-1}m) = h(x^{-1})h(m) \in h(x^{-1})U = U_e \ll x^{-1}m \in h^{-1}(U_e) \ll xh^{-1}(U_e)$. Hence $h^{-1}(U) = xh^{-1}(U_e)$. Since translation functions on topological groups are homeomorphisms we have that U_e is open in G_2 and contains $h(e) = e_{G_2}$, hence $h^{-1}(U_e)$ is open in G_1 by hypothesis. Thus $xh^{-1}(U_e) = h^{-1}(U)$ is open and we are done.

Exercise 2

- (a) Let Λ be a closed subgroup of $(\mathbb{R}, +)$. Show that either
 - (i) $\Lambda = \{0\},\$
 - (ii) $\Lambda = \alpha \mathbb{Z}$ for some $\alpha \in \mathbb{R}_{>0}$, or
 - (iii) $\Lambda = \mathbb{R}$.

SOLUTION:

If $\Lambda = 0$ there is nothing to show. Otherwise, consider $\Lambda_+ = \Lambda \cap \mathbb{R}_{>0}$ and $\Lambda_- = \Lambda \cap \mathbb{R}_{<0} = -\Lambda_+$. Let $\alpha = inf(\Lambda_+)$. Since Λ is closed, $\alpha \in \Lambda$.

If $\alpha > 0$, we claim $\Lambda = \alpha \mathbb{Z}$. Obviously it's enough to show $\Lambda_+ = \alpha \mathbb{Z}_{>0}$. Pick $x > 0, x \in \Lambda$. By construction $x \ge \alpha$. Since $n\alpha$ goes to ∞ as n goes to ∞ , we get that there exists a maximal $m \in \mathbb{Z}_{>0}$ such that $m\alpha \le x$ and $(m+1)\alpha > x$. But since $\alpha \in \Lambda$, we get that $m\alpha \in \Lambda$ and so $x - m\alpha \in \Lambda$. Since $0 \le x - m\alpha < \alpha$, we conclude by minimality of α that $0 = x - m\alpha$ (otherwise it would be a positive element of Λ strictly smaller than α). Hence, $\Lambda_+ \subseteq \alpha \mathbb{Z}_{>0}$ and obviously $\alpha \mathbb{Z}_{>0} \subseteq \Lambda_+$. Thus, conclusion follows. If $\alpha = 0$, we claim $\Lambda = \mathbb{R}$. Obviously it's enough to show $\Lambda_+ = \mathbb{R}_{>0}$. Pick any $x > 0, x \in \mathbb{R}$. Pick any $\varepsilon > 0$. Set $\varepsilon_x = min(\varepsilon, x) > 0$. Since $\alpha = 0$ there exists $y \in \Lambda$ with $0 < y < \varepsilon_x$. As before, choose m the maximal natural number for which $my \le x < (m+1)y$. Set $y_1 = my$. As before $y_1 \in \Lambda$ and $0 \le x - y_1 < y < \varepsilon_x \le \varepsilon$. So for every $\varepsilon > 0$ we can find a point $y_1 \in \Lambda$ at most ε away from x. But this means that x is a limit point of Λ and since Λ is closed, the conclusion follows.

(b) How many subgroups of $(\mathbb{R}, +)$ are there?

SOLUTION:

Let M be the set of all subgroups of \mathbb{R} . \mathbb{R} is a \mathbb{Q} -vector space in a natural way. Set B to be a \mathbb{Q} -basis of \mathbb{R} . Define the function $s : 2^B \longrightarrow M$ by mapping $S \mapsto \operatorname{span}(S)$. Notice that this is well defined since every \mathbb{Q} -subspace of \mathbb{R} is also a subgroup. Moreover, this function is injective since B is a basis. Hence $|2^B| \leq |M|$. Obviously $|M| \leq |2^{\mathbb{R}}|$ since every subgroup is also a subset.

Let's show $|B| = |\mathbb{R}|$.

For $i \in \mathbb{N}$ define $X_i = \{x \in \mathbb{R} : x = \lambda_1 x_1 + \ldots + \lambda_i x_i \text{ for some } \lambda_i \in \mathbb{Q}_{\neq 0} \text{ and } x_i \in B\}$ with $X_0 = 0$. It is easy to see that X_i form a partition of R. Moreover, it is also easy to see that $|X_i| = |\mathbb{Q} \times \ldots \times \mathbb{Q} \times B \times \ldots \times B$ where \mathbb{Q} is multiplied with itself i times and the same with B.

We will invoke the following standard lemma in set theory. if X, Y are two sets such that X is countable and Y is infinite then $|X \times Y| = |Y|$ and $|Y \times Y| = |Y|$.

Using the lemma we get that $|X_i| = |B|$. Since R is a countable disjoint union of the X_i s we get that $|R| = |\mathbb{N} \times B| = |B|$.

We conclude that $|M| = 2^{\mathbb{R}}$

Exercise 3

Let X be a compact Hausdorff topological space. Show that Homeo(X) is a topological group when equipped with the compact-open topology.

SOLUTION:

Set G = Homeo(X) and let $m : G \times G \longrightarrow G$ be the multiplication (composition) map and $i : G \longrightarrow G$ be the "taking inverse" map. We have to show that these are continuous with respect to the compact-open topology.

Notice that $i^{-1}(V(K,U) = V(K^c, U^c)$ (K compact and U open). Indeed, we have the following sequence of equivalences: $f \in i^{-1}(V(K,U)) \ll i(f) \in V(K,U) \ll f^{-1} \in V(K,U) \ll f^{-1}(K) \subset U \ll K \subset f(U) \ll f(U)^c \subset K^c \ll f(U^c) \subset K^c \ll f \in V(U^c,K^c)$. In this sequence we have used the fact that f is bijective is order to get that complements of images are images of complements. The fact that X is compact and Hausdorff implies that in X compactness is the same as closedness. Hence K^c is open and U^c is compact. Thus indeed i is continuous.

Let's show that m is continuous. It is enough to show that $m^{-1}(V(K,U))$ is open for every compact K and open U. If this preimage is empty then we are done. If it is not, it is enough to show that for every point y = (f,g) in this preimage there exists an open set $V_y \subset m^{-1}(V(K,U))$ with $y \in V_y$. Then it will follow trivially that the preimage is the union of such V_y and thus open.

So pick $y = (f,g) \in m^{-1}(V(K,U))$. We have that $f(g(K)) \subset U$. Hence $g(K) \subset f^{-1}(U)$. Recall that since X is compact and Hausdorff, closedness and compactness are equivalent. In particular g(K) is closed. Since f is a homeomorphism, we have that $f^{-1}(U^c)$ is also closed and also disjoint from g(K). Again, since X is compact and Hausdorff, it is also normal. Hence, we can separate

ETH Zürich	D-MATH	Introduction to Lie Groups
Prof. Dr. Urs Lang	Alexandru Sava	October 8, 2014

g(K) and $f^{-1}(U^c)$ with two disjoint open sets U_1, U_2 such that $g(K) \subset U_1$ and $f^{-1}(U^c) \subset U_2$. Set $K_1 = U_2^c$. We have that

$$g(K) \subset U_1 \subset K_1 \subset f^{-1}(U)$$

Notice that K_1 is closed and thus compact. Also notice that by construction $f \in V(K_1, U)$ and $g \in V(K, U_1)$. So $(f, g) \in V(K_1, U) \times V(K, U_1)$. Set $V_{(f,g)} = V(K_1, U) \times V(K, U_1)$ and notice that this set is open. Moreover, if $(f', g') \in V_{(g,h)}$ then $g' \in V(K, U_1)$ and $f' \in V(K_1, U)$. Hence $f'(K_1) \subset U$ and $g'(K) \subset U_1$. This implies that $f'(g'(K)) \subset f'(U_1) \subset f'(K_1) \subset U$. Thus $V_{(f,g)} \subset m^{-1}(V(K, U))$ and we are done.

Exercise 4

Show that $Homeo(S^1)$ with the compact-open topology is not locally compact. SOLUTION:

Set $G = \text{Homeo}(\mathcal{S}^1)$. It is enough to show that $id \in G$ has no compact neighborhood. Assume the contrary. Then there exists K compact and U open with $K \subset U$ such that $V(K, U) \subset K$ with K compact. Since \mathcal{S}^1 is a metric space, it follows that the compact-open topology on G coincides with the topology given by compact convergence, or (equivalently) the topology induced by the uniform metric on compact subsets of \mathcal{S}^1 . Since \mathcal{S}^1 is compact itself, this gives that the compact topology on G is given by the uniform metric

$$d_u(f,g) = \sup_{x \in \mathcal{S}^1} d(f(x),g(x))$$

where d is the standard metric on \mathcal{S}^1 .

Because our goal is to show that *id* has no compact neighborhood, we want construct small linear perturbations of *id*. For simplicity we identify S^1 with the interval [0, 1] with the identification $0 \sim 1$. Choose a sequence $1 > \varepsilon_n > 0$ such that ε_n converges to 0. Define the following sequence of functions:

$$f_n(x) = \begin{cases} x+1-\frac{\varepsilon_n}{2} & \text{for } 0 \le x \le \frac{\varepsilon_n}{2} \\ 2x-\varepsilon_n & \text{for } \frac{\varepsilon_n}{2} \le x \le \varepsilon_n \\ x & \text{for } \varepsilon_n \le x \le 1-\varepsilon_n \\ \frac{1}{2}(x+1-\varepsilon_n) & \text{for } 1-\varepsilon_n \le x \le 1 \end{cases}$$

It is easy to check that f_n are well defined homeomorphisms of S^1 , we distinguish two cases.

- (a) $K = S^1$ in which case $U = K = S^1$ since $K \subset U \subset S^1$. But then V(K, U) = G and $\mathcal{K} = G$ we get that G is compact so f_n must containt a converging subsequence with respect to the d_u metric.
- (b) $K \neq S^1$ in which case, since K is closed, there exists a point x_0 and an open interval around x_0 disjoint of K. After translation by x_0 of K, U and of the f_n s we may assume $x_0 = 0$. But notice that the $f_n = id$ on the interval $[\varepsilon_n, 1 \varepsilon_n]$. So for n big enough, the f_n s land in V(K, U) and thus in \mathcal{K} . So again we get that the f_n s must contain a converging subsequence with respect to the d_u norm.

ETH Zürich	D-MATH	Introduction to Lie Groups
Prof. Dr. Urs Lang	Alexandru Sava	October 8, 2014

In either case we obtain a converging subsequence of the f_n s. Pick such a subsequence and denote with f its limit. It is obvious that f_n must converge to fpointwise also. But the f_n s converge pointwise to *id*. Since X is Hausdorff, we get that f = id. However notice that

$$d_u(f_n, id) \ge d(f_n(0), 0) = 1 - \frac{\varepsilon}{2} > \frac{1}{2}$$

Hence no subsequence of the f_n s can converge uniformly to *id*. Thus we reached a contradiction that arose from the fact that we assumed G to be locally compact. The conclusion follows.