Solutions Exercise Sheet 2

Exercise 1

Let G be a locally compact topological group, and let μ be a left Haar measure on G.

(a) G is discrete if and only if $\mu(\{e\}) > 0$.

SOLUTION:

If G is discrete then $\{e\}$ is open and since μ is a Haar measure, we get that $\mu(\{e\}) > 0$.

Now assume $\mu(\{e\}) > 0$ and let K be a compact neighborhood of e. Let U be the open interior of K. Since K is compact and μ is Haar then $\mu(K) < \infty$ and hence $\mu(U) < \infty$.

Set $m = \mu(\{e\}) > 0$. Because all translation functions are homeomorphism, we get that $\mu(\{x\}) = m > 0$ for all $x \in G$. Combining this with the fact that $\mu(U) < \infty$ we immediately obtain that U is finite. Since $e \in U$ we get that $U = \{e, x_1, \ldots, x_n\}$ for some $x_i \in G, 1 \leq i \leq n$. But then $\{e\} = U \cap \{x_1, \ldots, x_n\}^c$. Hence $\{e\}$ is open and by virtue of the translation homeomorphisms we get that G is discrete.

(b) G is compact if and only if $\mu(G) < \infty$.

SOLUTION:

If G is compact then because μ is Haar we get that $\mu(G) < \infty$.

Now assume $\mu(G) < \infty$. Let K be a compact neighborhood of e. The idea is to try to cover G with finitely many disjoint translates of K. For this purpose set $K' = KK^{-1}$. Notice that K' is compact being the image of the compact set $K \times K$ (check that this is compact, or ask me via email or in class why) through the continuous map $G \times G \to G$, $(x, y) \mapsto xy^{-1}$. Notice that K contains a non-empty open set so $\mu(K) > 0$. Since $K \subset K'$ we immediately get $\mu(K') > 0$. If G is not compact then there exist a sequence of points $x_i \in G, i \geq 0$ with $x_0 = e$ such that $x_k \notin \bigcup_{i < k} x_i K'$.

Otherwise G would be a finite union of compact sets and hence compact. Let's look at the translates x_iK . If $x_iK \cap x_jK \neq \emptyset$ for i < j then $x_ik_1 = x_jk_2$ for some $k_1, k_2 \in K$. But then $x_j = x_ik_1k_2^{-1}$ and so $x_j \in x_iKK^{-1}$ which contradicts our choice for x_j . Thus all these translates are disjoint. But then

$$\mu(G) \ge \sum_{i=0}^{i=N-1} \mu(x_i K) = N\mu(K)$$

Letting $N \to \infty$ gives us $\mu(G) = \infty$ which is a contradiction. Thus G is compact.

ETH Zürich	D-MATH	Introduction to Lie Groups
Prof. Dr. Urs Lang	Alexandru Sava	October 23, 2014

Exercise 2

Find an example of a locally compact topological group that contains a Borel set with finite left Haar measure but infinite right Haar measure.

SOLUTION:

Take

$$B = \left\{ \begin{pmatrix} x & y \\ 0 & \frac{1}{x} \end{pmatrix} : x \in \mathbb{R}_{>0}, y \in \mathbb{R} \right\}$$

Consider the following functionals on $C_c(B)$

$$\begin{split} \Lambda_{\text{left}}(f) &= \int_{\mathbb{R}_{>0}} \int_{\mathbb{R}} f(X) \frac{d\lambda(y) d\lambda(x)}{x^2} \\ \Lambda_{\text{right}}(f) &= \int_{\mathbb{R}_{>0}} \int_{\mathbb{R}} f(X) d\lambda(y) d\lambda(x) \end{split}$$

where $d\lambda(y)d\lambda(x)$ is the standard Lebesgue measure on \mathbb{R}^2 . Let's show $\Lambda_l eft$ is left invariant. We have that

$$\begin{pmatrix} a & b \\ 0 & \frac{1}{a} \end{pmatrix} \cdot \begin{pmatrix} x & y \\ 0 & \frac{1}{x} \end{pmatrix} = \begin{pmatrix} ax & ay + \frac{b}{x} \\ 0 & \frac{1}{ax} \end{pmatrix}$$

So the change of variables $\phi_1 : \mathbb{R}^2 \to \mathbb{R}^2, (x, y) \mapsto (x_{\text{new}}, y_{\text{new}})$ for the left translation is given by:

$$x_{\text{new}} = ax$$
$$y_{\text{new}} = ay + \frac{b}{x}$$

The Jacobian of this transformation is $J_1(x,y) = \begin{pmatrix} a & 0 \\ -\frac{b}{x^2} & a \end{pmatrix}$. Now let $L_{a,b}$

denote the left translation by the matrix $\begin{pmatrix} a & b \\ 0 & \frac{1}{a} \end{pmatrix}$ We have that

$$\begin{split} \Lambda_{\text{left}}(f \circ L_{a,b}) &= \int_{\mathbb{R}>0} \int_{\mathbb{R}} f(L_{a,b}X) \frac{d\lambda(y)d\lambda(x)}{x^2} = \\ &= \int_{\mathbb{R}>0} \int_{\mathbb{R}} f(X \circ \phi_1(x,y)) \frac{d\lambda(y)d\lambda(x)}{x^2} = \\ &= \int_{\mathbb{R}>0} \int_{\mathbb{R}} f(L_{a,b}X) a^2 \frac{d\lambda(y)d\lambda(x)}{(ax)^2} = \\ &= \int_{\mathbb{R}>0} \int_{\mathbb{R}} f(L_{a,b}X) |\det(J_1)|^2 \frac{d\lambda(y)d\lambda(x)}{x^2_{\text{new}}} = \\ &= \int_{\mathbb{R}>0} \int_{\mathbb{R}} f(X) \frac{d\lambda(y)d\lambda(x)}{x^2} = \Lambda_{\text{left}}(f) \end{split}$$

This means that the functional Λ_{left} defines a left Haar measure on B. Similarly, one can show that the functional Λ_{right} defines a right Haar measure on B. Now consider the subset B_1 of B defined by the inequalities $x \ge 1, 0 \le y \le 1$. It is easy to show that B_1 has finite left Haar measure but infinite right Haar measure.

Exercise 3

Prove that the modular function $\Delta: G \to (0, \infty)$ (introduced in class) is a continuous homomorphism.

SOLUTION:

Let μ be a left Haar measure. Notice that

$$\Delta(gh) = \frac{\mu(Sgh)}{\mu(S)} = \frac{\mu(Sgh)}{\mu(Sg)} \frac{\mu(Sg)}{\mu(S)} = \Delta(h)\Delta(g) = \Delta(g)\Delta(h)$$

Hence Δ is a homomorphism. To show continuity, it is enough to show Δ is continuous at e_G . For this there are (at least) two ways of proceeding: either try to use Urysohn's lemma and the functional corresponding to μ , or try to construct some open set V and some measurable set S for which $\mu(Sg)$ is "close" to $\mu(S)$ for all $g \in V$. We will take the later approach.

Pick $\varepsilon > 0$ and let K be a compact neighbourhood of e_G with non-empty open interior U_0 ($e_G \in U_0$). Set K' = KK. As in Exercise 1, K' is compact. The idea is to now find as many measureble sets S_i in between $K \subset K'$ and open sets V_i with $e_G \in V_i$ such that $S_{i+1}V_{i+1} \subset S_i$. Then by a standard box principle type argument, the conclusion will follow.

Let $m: G \times G \to G$ be the multiplication map. Look at $m^{-1}(U_0)$. Since $e_G e_G = e_G$ we get that there exists open sets $V_0.V'_0$ with $e_G \in V_0, e_G \in V'_0$ such that $V_0V'_0 \subset U$. Set $U_1 = V_0 \cap V'_0 \cap U_0$. Since $e_G \in U_1$, U_1 is a nonempty open set with $U_1 \subset U_0$ and $U_1U_1 \subset U_0$. Switching U_0 with U_1 , we can construct a nonempty open set U_2 with $e_G \in U_2$, $U_2 \subset U_1$ and $U_2U_2 \subset U_1$. Continuing inductively we get a sequence of nonempty open sets $(U_i)_i$ with $e_G \in U_i$, $U_{i+1} \subset U_i$ and $U_{i+1}U_{i+1} \subset U_i$. Moreover all U_i s are subset of K which is compact so they have nonzero finite measure.

For N > 0, look at the sequence of inclusions

$$K \subset KU_N \subset KU_{N-1} \ldots \subset KU_1 \subset KU_0 \subset KK = K'$$

We have that

$$\mu(K') - \mu(K) \ge \mu(KU_0) - \mu(KU_N) = \sum_{i=0}^{N-1} \mu(KU_i) - \mu(KU_{i+1}) \ge 0$$

Pick N > 0 such that $0 \leq \frac{\mu(K') - \mu(K)}{N} < \varepsilon \mu(K)$. Since the $\mu(KU_i) - \mu(KU_{i+1})$ are N non-negative real numbers adding up to at most $\mu(K') - \mu(K)$, it means that there exist some i with $0 \leq i \leq N - 1$ such that $0 \leq \mu(KU_i) - \mu(KU_i) = \mu(KU_{i+1}) \leq \frac{\mu(K') - \mu(K)}{N} < \varepsilon \mu(K)$. But then for all $g \in U_{i+1}$ we have that $\mu(KU_{i+1}g) = \mu(KU_{i+1}U_{i+1}) = \mu(KU_i) = \mu(KU_{i+1}) + \varepsilon \mu(K)$

$$\Delta(g) = \frac{\mu(KU_{i+1}g)}{\mu(KU_{i+1})} \le \frac{\mu(KU_{i+1}U_{i+1})}{\mu(KU_{i+1})} \le \frac{\mu(KU_i)}{\mu(KU_{i+1})} \le \frac{\mu(KU_{i+1}) + \varepsilon\mu(K)}{\mu(KU_{i+1})}$$

Hence

$$\Delta(g) \le 1 + \varepsilon \frac{\mu(K)}{\mu(KU_{i+1})} \le 1 + \varepsilon \frac{\mu(K)}{\mu(K)} = 1 + \varepsilon$$

We should mention at this point that all sets KU_i are measurable as they are open as union of open sets of type kU_i with $k \in K$.

ETH Zürich	D-MATH	Introduction to Lie Groups
Prof. Dr. Urs Lang	Alexandru Sava	October 23, 2014

So $\Delta(g) \leq 1 + \varepsilon$ for all $g \in U_{i+1}$.

Consider the inversion map $inv: G \to G$ and set $U'_{i+1} = inv^{-1}(U_{i+1})$. We have that for all $g \in U'_{i+1}$

(1)

$$\Delta(g) = \frac{1}{\Delta(g^{-1})} \ge \frac{1}{1+\varepsilon} > 1-\varepsilon$$

The first inequality is due to the fact that for $g \in U'_{i+1}$ we have that $g^{-1} \in U_{i+1}$, and the second inequality is due to the fact that $1 > 1 - \varepsilon^2 = (1 - \varepsilon)(1 + \varepsilon)$.

So for all $g \in U'_{i+1}$ we have that $\Delta(g) > 1 - \varepsilon$. (2) Combining (1) and (2) and setting $V = U_{i+1} \cap U'_{i+1}$ we get that for all g in the neighborhood V of e_G the following inequality holds

$$1 - \varepsilon < \Delta(g) \le 1 + \varepsilon$$

Continuity follows immediately.

Exercise 4

Consider the locally compact Hausdorff group $G = (\mathbb{R}^n, +)$ where $n \in \mathbb{N}_0$.

(i) Show that Aut(G), i.e. the group of bijective homomorphisms which are homeomorphisms as well, is given by $GL(n, \mathbb{R})$.

SOLUTION:

Pick $f \in Aut(G)$. It is enough to show that f is linear over the real vector space \mathbb{R}^n . Additivity is clear by virtue of being a morphism. We need to show $f(\lambda x) = \lambda f(x)$ for all $\lambda \in \mathbb{R}$. Because f is a morphism, we immediately get $f(\lambda x) = \lambda f(x)$ for all $\lambda \in \mathbb{Z}$. Since

$$qf(\frac{p}{q}x) = f(px) = pf(x)$$

for $q \in \mathbb{Z}_{>0}$ and $p \in \mathbb{Z}$ we get that $f(\lambda x) = \lambda f(x)$ for all $\lambda \in \mathbb{Q}$.

Now pick $\lambda \in \mathbb{R}$ and consider an approximating sequence $(\lambda_i)_i$ of rational numbers. Then

$$f(\lambda x) = f(\lim_{i \to \infty} \lambda_i x) = \lim_{i \to \infty} f(\lambda_i x) = \lim_{i \to \infty} \lambda_i f(x) = \lambda f(x)$$

where the limit commutes with f because of continuity. Thus f is linear.

(ii) Show that $\operatorname{mod}_G : \operatorname{Aut}(G) \to \mathbb{R}_{>0}$ is given by $\alpha \mapsto |\det \alpha|^{-1}$.

SOLUTION:

Let μ be a left Haard measure on G (guess what it is). Pick $A \in GL(n, \mathbb{R})$. Pick $f \in C_c(G)$. Let's evaluate

$$\int_{\mathbb{R}^n} f(Ax) d\mu(x)$$

Notice that the transformation $x \mapsto Ax$ has Jacobian A. Moreover $A \cdot \mathbb{R}^n =$ \mathbb{R}^n . Hence

$$\int_{\mathbb{R}^n} f(Ax) d\mu(x) = \frac{1}{|\det(A)|} \int_{\mathbb{R}^n} f(Ax) |\det(A)| d\mu(x) = \frac{1}{|\det(A)|} \int_{\mathbb{R}^n} f(x) d\mu(x)$$

ETH Zürich	D-MATH	Introduction to Lie Groups
Prof. Dr. Urs Lang	Alexandru Sava	October 23, 2014

Thus

$$\operatorname{mod}_{G}(A) = \frac{\int_{\mathbb{R}^{n}} f(Ax) d\mu(x)}{\int_{\mathbb{R}^{n}} f(x) d\mu(x)} = \frac{1}{|\det(A)|}$$