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Exercise 1
(i) Let G be a topological group and let H be a subgroup of G. Equip G/H

with the quotient topology. Show that G is connected if both H and G/H
are connected.

SOLUTION :

Suppose G is not connected. Then G = G1 tG2 with G1, G2 disjoint non-
empty open subsets of G. Let π : G → G/H be the standard projection.
We easily get G/H = π(G1) ∪ π(G2).

Because π is an open map, π(G1) and π(G2) are non-empty open subsets
of G/H. Since G/H is connected, we get that π(G1) ∩ π(G2) 6= ∅. But
this implies there exists g1 ∈ G1 and g2 ∈ G2 such that π(g1) = π(g2) or,
equivalently, g−11 g2 ∈ H.

Consider X1 = H ∩ (g−11 G1) and X2 = H ∩ (g−11 G2). Because eG ∈
X1, g

−1
1 g2 ∈ X2 and because translations are homeomorphisms, it follows

immediately that X1 and X2 are non-empty disjoint open sets of H. More-
over, H = X1tX2 hence contradicting the fact that H is connected. Thus
G is connected and we are done.

(ii) Show that SO(n) is connected for all n ∈ N.

SOLUTION

We will proceed inductively. For n = 2 we have that SO(2) is homeomor-
phic to S1 which is obviously connected.

Define the inclusions in : SO(n)→ SO(n+ 1)

A 7→
(
A 0
0 1

)
It’s easy to see that SO(n) is homeomorphic to in(SO(n)). Define jn :
SO(n+ 1)→ Sn

A 7→ last column of A

It’s easy to see that the map jn is continuous and open as a restriction of
a projection from R(n+1)2 to Rn+1 (remember that projections are open
maps). Moreover jn is surjective and jn(A) = jn(B) if and only if A−1B =
ATB ∈ in(SO(n)). Given that the projection SO(n + 1) → SO(n +
1)/in(SO(n)) is an open map also, we get that jn descends to a continuous
bijective open map, hence a homeomorphism SO(n+ 1)/in(SO(n) ' Sn.
Since in(SO(n)) is connected by the induction hypothesis and since Sn
is obviously connected, we get by item (i) that SO(n + 1) is connected.
Thus the induction step is completed and the conclusion follows.
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Exercise 2
Let G = SL(2,R) act on H = {x + iy ∈ C | y > 0} via fractional linear
transformations. Show that this action is transitive, StabG(i) = SO(2,R) =: H
and that the induced isomorphism of G-spaces G/H ∼= H is a homeomorphism.

SOLUTION :
Pick z = x + iy ∈ H. Let’s show that z is in i’s orbit. We need to find

A ∈ SL(2,R), A =

(
a b
c d

)
such that A.i = z or, equivalently


ac+ bd

c2 + d2
= x

1

c2 + d2
= y

Let’s try to find a solution for this system with c = 0. Then we can choose

d =
1
√
y

which then forces a =
√
y (because det(A) = 1). Finally, the first

equation (after all substitutions are made) gives us
b
√
y

= x, or b = x
√
y. So we

found A =

√y x
√
y

0
1
√
y

 such that A.i = z. Thus the action is transitive.

If A.i = i then 
ac+ bd

c2 + d2
= 0

1

c2 + d2
= 1

Hence c2 + d2 = 1, ac + bd = 0 and ad − bc = 1. Squaring and adding the last
two equations gives us a2 + b2 = 1. Now

AAt =

(
a2 + b2 ac+ bd
ac+ bd c2 + d2

)
=

(
1 0
0 1

)
which means that A ∈ H. Hence StabG(i) ⊆ H. The reverse inclusion is imme-
diate. Thus StabG(i) = H.

The induced isomorphism is given by (A mod H) 7→ A.i. It is easy to see that
this is a continuous mapping (just look at preimages of balls in C and take into
account that the topology on SL(2,R) is the subspace topology from GL(2,R)
which is nothing more than the Euclidian topology in R4). Now we want to check
that the inverse is also continuous. The above discussion shows that the inverse
of this isomorphism is given by the composition of the map φ : H→ G) given by

x+iy 7→

√y x
√
y

0
1
√
y

, with the projection map G→ G/H. It is easy to see that

φ is a continuous map since all the entries of the image matrix are continuous
maps. Moreover, we know that this is also true for the projection map. So the
inverse is also continuous hence the isomorphism is also a homeomorphism.
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Exercise 3
Consider the action of SL(2,R) on RP1 = {V : V is a 1-dimensional subspace of R2}
given by g.V := gV (g ∈ SL(2,R), V ∈ RP1). Show directly or by means of
Weil’s Theorem (Theorem 1.11 in class) that there is no non-trivial Radon mea-
sure on RP1 that is invariant under the above action of SL(2,R).

SOLUTION :
Set G = SL(2,R) and consider the map φ : G→ RP1 given by(

a b
c d

)
7→ span

{(
a
c

)}
It is easy to see that φ is G-equivariant and surjective. Moreover, if we let

H to be the subgroup of G given by

H = {

(
a b

0
1

a

)
: a ∈ R 6=0}

Then we notice that φ(g1) = φ(g2) iff g−11 g2 ∈ H. This is because if we let

g1 =

(
a b
c d

)
then g2 =

(
ka b′

kc d′

)
for some k ∈ R 6=0, b

′ ∈ R, d′ ∈ R and k(ad′−cb′) = 1.

But then

g−11 g2 =

(
d −b
−c a

)(
ka b′

kc d′

)
=

(
k db′ − bd′

0
1

k

)
∈ H

This means that φ descends to a bijective G-equivariant map φ : G/H → RP1

given by φ(gH) = φ(g). Moreover if π : G → G/H is the canonical projection
then we have that φ = φ ◦ π.

It is easy to check that φ is continuous and that φ is an open map (look
at preimages of open balls in the standard affine patches of RP1 for continuity
of φ and at images of open balls in R2 ∩SL(2,R) to check that φ is an open
mapping). We want now to check that φ is an open map. It will then follow that
φ is a homeomorphism.

Pick E ⊂ G/H open and set E′ = π−1(E). Since π is surjective we have
that π(E′) = E and since π is continuous, we get that E′ is open in G. But
then φ(E) = φ(π(E′)) = φ(E′) which is open since φ is an open map. Thus the
G-isomorphism φ is also a homeomorphism.

This implies that we have to show that there is no G-invariant measure on
G/H. However, by Weil’s theorem this happens iff ∆G(x) = ∆H(x) for every
x ∈ H.

However we have already seen that ∆G(x) = 1 for all x ∈ G whereas

∆H(

(
a b

0
1

a

)
) =

1

a2

Since the two modular functions don’t agree on H we are done.
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Exercise 4
Let G be a compact Hausdorff group with left Haar measure µG and let H < G
be a closed subgroup of G with left Haar measure µH . Show that the proof
of Weil’s theorem produces the following G-invariant Radon measure µG/H on
G/H: For all Borel sets E ⊆ G/H,

µG/H(E) =
µG(π−1(E))

µH(H)
, in particular µG/H(G/H) =

µG(G)

µH(H)
.

SOLUTION :
Let’s try a "sloppy" proof first. We have that

µG/H(E) =

∫
G/H

charE(xH)dµG/H(xH)

where charE is the characteristic function of E. Recall now that from the proof
of Weil’s Theorem we get that if TH is the map from Cc(G) to Cc(G/H) for

which TH(f)(xH) =

∫
H

f(xh)dµH(h), and TH(f) = charE for some f ∈ Cc(G)

then
∫
G/H

charE(xH)dµG/H(xH) =

∫
G

f(x)dµG(x).

Take f =
1

µH(H)
charπ−1(E). Then for xH ∈ E we have that xH = xhH for

all h ∈ H, so xh ∈ π−1(E) for all h ∈ H and thus TH(f)(xH) =
1

µH(H)

∫
H

1 dµH(h) =

1. Similarly, if xH /∈ E then xhH /∈ E for all h ∈ H so xh /∈ π−1(E) for all h ∈ H

and thus TH(f)(xH) =
1

µH(H)

∫
H

0 dµH(h) = 0. We get that TH(f) = charE .

Thus

µG/H(E) =

∫
G/H

charE(xH)dµG/H(xH) =

∫
G

f(x)dµG(x) =

=
1

µH(H)

∫
G

charπ−1(E)(x)dµG(x) =
µG(π−1(E))

µH(H)

The problem with this "sloppy" proof is that characteristic functions are not con-
tinuous in general. This is indeed a problem because so far we associated Radon
measures and Haar measure with functionals on the space of compactly sup-
ported continuous functions. The continuity requirement cannot be completely
dropped for Radon measures due to certain issues with respect to regularity con-
ditions. It can be shown that Haar measure on the other hand can be associated
to functionals on the larger space of integrable functions (not just continuous) in
which case the "sloppy" proof above is perfectly valid. However, for consistency
purposes, I will now use a different method that avoids this "mistake".

The point is that Haar measures are unique up to constants. So let’s check
that the measure µ′G/H defined by

µ′G/H(E) =
µG(π−1(E))

µH(H)
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is G-invariant. For this we notice that π−1(x.E) = xπ−1(E) (where a.(bH)
should read a acting on bH ∈ G/H) for all x ∈ G (this is a trivial consequence
of the fact that π is G-equivariant). This means that

µ′G/H(x.E) =
µG(xπ−1(E))

µH(H)
=
µG(π−1(E))

µH(H)

where the last equality uses G-invariance of µG. This means that µ′G/H is Haar.
But then by uniqueness of Haar measures we get that there exist a constant
K > 0 such that µG/H = Kµ′G/H . So now we only have to show K = 1. But for
this we notice that

µ′G/H(G/H) =
µG(G)

µH(H)
since π−1(G/H) = G.

However now we can use our "sloppy" proof since charG/H is continuous on
G/H and since charG is continuous on G. This gives us that

µG/H(G/H) =
µG(G)

µH(H)

Combining the last two equalities gives us K = 1 and thus we are done.
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