Mathematical Foundations For Finance

Exercise Sheet 10

Please hand in by Wednesday, 26/11/2013, 13:00, into the assistant's box next to office HG E 65.2.

Exercise 10-1. A Poisson process with parameter $\lambda > 0$ with respect to a probability measure \mathbb{P} and a filtration $\mathbb{F} = (\mathcal{F}_t)_{t \geq 0}$ is a (real-valued) stochastic process $N = (N_t)_{t \geq 0}$ which is adapted to \mathbb{F} , starts at 0 (i.e. $N_0 = 0$ \mathbb{P} -a.s..) and satisfies the following two properties:

(PP1) For $0 \le s < t$, the increment $N_t - N_s$ is independent (under \mathbb{P}) of \mathcal{F}_s and is (under \mathbb{P}) Poisson-distributed with parameter $\lambda(t-s)$, i.e.

$$\mathbb{P}[N_t - N_s = k] = \frac{(\lambda(t-s))^k}{k!} e^{-\lambda(t-s)}, \quad k \in \mathbb{N}_0.$$

(PP2) N is a counting process with jumps of size 1, i.e. for \mathbb{P} -almost all ω , the function $t \mapsto N_t(\omega)$ is right-continuous with left limits (RCLL), piecewise constant and \mathbb{N}_0 -valued, and increases by jumps of size 1.

Poisson processes form the cornerstone of *jump processes*, which are of importance in advanced financial modelling. Show that the following processes are (\mathbb{P}, \mathbb{F}) -martingales:

- (a) $\widetilde{N}_t := N_t \lambda t$, $t \geq 0$. This is also called a *compensated Poisson process*. Hint: If $X \sim Poi(\lambda)$, then $\mathbb{E}[X] = \lambda$.
- (b) $(\widetilde{N}_t)^2 N_t$, $t \ge 0$, and $(\widetilde{N}_t)^2 \lambda t$, $t \ge 0$. Hint: If $X \sim Poi(\lambda)$, then $Var[X] = \lambda$.
- (c) $S_t := e^{\log(1+\sigma)N_t \lambda \sigma t}, t \ge 0$, where $\sigma > -1$. This is also called a geometric Poisson process.

Exercise 10-2. The aim of this exercise is to compute hedging strategies in the Black-Scholes model. We work on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which there exists a standard Brownian motion W. This Brownian motion generates a filtration, that we augment with the \mathbb{P} null-sets. We call $\mathbb{F} = (\mathcal{F}_t)_{t \geqslant 0}$, the resulting filtration. The discounted price process (we assume r=0 for simplicity) is given by:

$$S_t = S_0 \exp\left(\left(\mu - \frac{1}{2}\sigma^2\right)t + \sigma W_t\right).$$

Let $K \in \mathbb{R}$. Find the hedging strategies of the contingent claims $h(S_T)$ for the payoff functions:

- (a) $h(y) = y^4 6y^2 + 3$, (5th Hermite polynomial).
- (b) $h(y) = \mathbb{1}_{\{y \geqslant K\}}$, digital option.
- (c) $h(y) = (K y)^+$, European put option.

Exercise 10-3. Let $W = (W_t)_{t \geq 0}$ be a BM.

Mathematical Foundations For Finance

(a) Show that for $\alpha, \sigma \in \mathbb{R}$ the process X defined by

$$X_t := e^{-\alpha t} \left(X_0 + \sigma \int_0^t e^{\alpha s} dW_s \right) \qquad t \ge 0,$$

satisfies the stochastic differential equation (SDE)

$$X_t - X_0 = -\alpha \int_0^t X_s \, \mathrm{d}s + \sigma W_t \qquad t \ge 0.$$

(b) Show that for $a \in \mathbb{R}$ the processes $Z^{(1)}$ and $Z^{(1)}$ defined by

$$Z_t^{(1)} := \cos(aW_t)$$
 and $Z_t^{(2)} := \sin(aW_t)$ $t \ge 0$,

satisfy the system of SDEs

$$\begin{cases} Z_t^{(1)} = 1 - \frac{a^2}{2} \int_0^t Z_s^{(1)} \, \mathrm{d}s - a \int_0^t Z_s^{(2)} \, \mathrm{d}W_s \,, \\ Z_t^{(2)} = -\frac{a^2}{2} \int_0^t Z_s^{(2)} \, \mathrm{d}s + a \int_0^t Z_s^{(1)} \, \mathrm{d}W_s \end{cases} \quad t \ge 0 \,.$$

(c) Let $S = (S_t)_{t>0}$ be given by

$$S_t = S_0 + \int_0^t \mu_u S_u \, \mathrm{d}u + \int_0^t \sigma_u S_u \, \mathrm{d}W_u \quad t \ge 0,$$

where $\mu=(\mu_t)_{t\geq 0}$ and $\sigma=(\sigma_t)_{t\geq 0}$ are predictable with $\int_0^T |\mu_s|+|\sigma_s|^2 ds <\infty$ P-a.s. for all T>0. For fixed T>0, show that

$$\int_0^T \sigma_s^2 \, \mathrm{d}s = -2\log \frac{S_T}{S_0} + \int_0^T \frac{2}{S_u} \, \mathrm{d}S_u \qquad \mathbb{P}\text{-a.s.}.$$

In terms of mathematical finance, this means that the integrated local variance of S has the same price as $-2\log$ contracts on S.

Hint. Argue that $S_t > 0$ \mathbb{P} -a.s. for all $t \geq 0$.