Mathematical Foundations For Finance Exercise Sheet 11

Please hand in by Wednesday, 3/12/2013, 13:00, into the assistant's box next to office HG E 65.2.

Exercise 11-1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space with a filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \geqslant 0}$. We consider a Poisson process $\left(N_{t}\right)_{t \geqslant 0}$ with intensity parameter $\lambda>0$.
(a) Compute the characteristic function of N_{t}.
(b) Show that the sequence of random variables $\left(\frac{1}{\sqrt{c}}\left(N_{c t}-\lambda c t\right)\right)_{c \in \mathbb{N} \backslash\{0\}}$ converges in law to a normal random variable X_{t} with mean 0 and variance λt.
(c) Assume that the sequence of processes $\left(\left(\frac{1}{\sqrt{c}}\left(N_{c t}-\lambda c t\right)\right)_{t \geqslant 0}\right)_{c \in \mathbb{N} \backslash\{0\}}$ converges almost surely to a process $\left(X_{t}\right)_{t \geqslant 0}$. Prove that the process X has independent increments.

Exercise 11-2. Let $W=\left(W_{t}\right)_{t \geq 0}$ be a Brownian motion with respect to a probability measure \mathbb{P} and a filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \geq 0}$. Starting from Itô's formula, decide for each of the following processes whether or not they are (\mathbb{P}, \mathbb{F})-martingales:
(a) $X_{t}^{(1)}:=W_{t}^{p}-p t W_{t}, t \geq 0$, and $p \geq 2$.
(b) $X_{t}^{(2)}:=\exp \left(\frac{1}{2} \alpha^{2} t\right) \cos \left(\alpha\left(W_{t}-\beta\right)\right), t \geq 0$, where $\alpha \neq 0$ and $\beta \in \mathbb{R}$.
(c) $X_{t}^{(3)}:=\sin W_{t}-\cos W_{t}, t \geq 0$.

Exercise 11-3. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, W a Brownian motion and $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \geqslant 0}$ the augmented filtration generated by W. We consider the Black-Scholes model, with $r=0$. The stock price process is given by:

$$
\begin{equation*}
S_{t}=S_{0} \exp \left(\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma W_{t}\right) \tag{1}
\end{equation*}
$$

The purpose of this exercise is to find the probability change that makes S a martingale.
(a) Compute $\mathbb{E}\left[S_{t} \mid \mathcal{F}_{s}\right]$ for $0 \leqslant s<t$.
(b) We define the process Z by $Z_{t}=\exp \left(-\frac{\mu}{\sigma} W_{t}-\frac{\mu^{2}}{2 \sigma^{2}} t\right)$. Prove that this process is a positive martingale under \mathbb{P}, and that $\mathbb{E}\left[Z_{t}\right]=1$ for all $t \in[0, T]$.
(c) Define \mathbb{Q} as the probability measure whose density process with respect to \mathbb{P} is Z. Prove that the process \widetilde{W} defined by $\widetilde{W}_{t}=W_{t}+\frac{\mu}{\sigma} t$ is a \mathbb{Q}-Brownian motion. Prove then that S is a martingale under \mathbb{Q}.

