Mathematical Foundations For Finance

Exercise Sheet 12

Please hand in by Wednesday, 10/12/2013, 13:00, into the assistant's box next to office HG E 65.2.

Exercise 12-1. The aim of this exercise is to use a relation between American and European contingent claims to compute the price of an American option.

Let $(\Omega, \mathcal{F}, \mathbb{P}, \mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]})$ be a filtered probability space, on which exists a Brownian motion W. We consider a Bachelier market model with two assets :

$$S_t^0 \equiv 1,$$

$$S_t^1 = S_0^1 + \sigma W_t,$$

and we define the process $X^{t,x}$ by $X^{t,x}_s = x + \sigma (W_s - W_t)$ for $s \in [t,T]$. It is the price process of the risky asset given that its price at t is x.

Let g be a measurable function such that $g(S_t^1)$ is in L^1 for all $t \in [0, T]$. We consider the European contingent claim with payoff $g(S_T)$ at time T. Define

$$u(x,t) = \mathbb{E}\left[g\left(x + \sigma\left(W_T - W_t\right)\right)\right].$$

Assume that u is a continuous function of its arguments.

The price process V of the European option with terminal payoff $g(S_T^1)$ is then given by (see Exercise 9-3):

$$\widetilde{V}_t = u\left(S_0^1 + \sigma W_t, t\right).$$

Define

$$v_g(x) = \inf_{s \in [0,T]} u(x,s).$$

We assume that the infimum is attained at a point that we call t(x), and that the function $x \mapsto t(x)$ is continuous.

We consider now the American option with payoff process U, defined as $U_t = v_g(S_t^1)$. Let $C_t := \{x \in \mathbb{R} \mid t(x) \ge t\}$ be the continuation region of the option at time t. For $x \in C_t$ the price of the American option at time t is given by :

$$V_t = \sup_{\tau \in \mathcal{T}_{t,T}} \mathbb{E} \left[v_g \left(X_{\tau}^{t,S_0^1 + \sigma W_t} \right) \mid \mathcal{F}_t \right],$$

where $\mathcal{T}_{t,T}$ is the set of stopping times that takes value in [t,T].

- (a) Prove that the process $Z = (u(X_s^{t,x},s))_{t \leq s \leq T}$ is a martingale under \mathbb{P} .
- (b) Prove that: $\sup_{\tau \in \mathcal{T}_{t,T}} \mathbb{E} \left[v_g \left(X_{\tau}^{t,x} \right) \mid \mathcal{F}_t \right] \leq u(x,t)$ *Hint.* Use part a.
- (c) Prove that for $x \in C_t$, the following holds: $\sup_{\tau \in \mathcal{T}_{t,T}} \mathbb{E} \left[v_g \left(X_{\tau}^{t,x} \right) \mid \mathcal{F}_t \right] \ge u(t,x)$. *Hint.* Define the stopping time $\tilde{\tau} = \inf \{ s \in [t,T] \mid s = t(X_s^{x,t}) \} \land T$. You don't have to prove that it is a stopping time.
- (d) Let $g: x \mapsto x^4 10x^2 + 5$. Find v_g , and compute the price of the American contingent claim with payoff process $v_g(S_t^1)$.

Exercise 12-2. Let $W = (W_t)_{t\geq 0} = (W_t^1, W_t^2, \dots, W_t^m)_{t\geq 0}$ be an \mathbb{R}^m -valued Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

- (a) Show that for $k \neq \ell$ the process $W^k W^\ell$ is a martingale.
- (b) Conclude that $[W^k, W^\ell]_t = \delta_{k\ell} t$, for $t \ge 0$, and $k, \ell \in \{1, \dots, m\}$.

Exercise 12-3. Let $(\Omega, \mathcal{F}, \mathbb{P}, \mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]})$ be a filtered probability space and consider two *independent* Brownian motions $W^1 = (W_t^1)_{t \in [0,T]}$ and $W^2 = (W_t^2)_{t \in [0,T]}$. Let $\widetilde{S}^1 = (\widetilde{S}^1_t)_{t \in [0,T]}$ and $\widetilde{S}^2 = (\widetilde{S}^2_t)_{t \in [0,T]}$ be two *undiscounted* stock price processes with the following dymanics

$$\begin{split} \mathrm{d} \widetilde{S}^1_t &= \widetilde{S}^1_t(\mu_1\,\mathrm{d} t + \sigma_1\,\mathrm{d} B^1_t), \qquad \widetilde{S}^1_0 > 0, \\ \mathrm{d} \widetilde{S}^2_t &= \widetilde{S}^2_t(\mu_2\,\mathrm{d} t + \sigma_2\,\mathrm{d} B^2_t), \qquad \widetilde{S}^2_0 > 0, \end{split}$$

where $B^1 = W^1$, $B^2 = \alpha W^1 + \sqrt{1 - \alpha^2} W^2$, for some $\alpha \in [0, 1)$, $\mu_1, \mu_2 \in \mathbb{R}$ and $\sigma_1, \sigma_2 > 0$.

(a) Apply Itô's formula to $X^1 := \frac{\widetilde{S}^2}{\widetilde{S}^1}$ and $X^2 := \frac{\widetilde{S}^1}{\widetilde{S}^2}$.

Remark. Since \tilde{S}^1 and \tilde{S}^2 have continuous trajectories and satisfy $\tilde{S}_t^1, \tilde{S}_t^2 > 0$ for all $t \in [0, T]$ \mathbb{P} -a.s., we can choose each of them as *numéraire*.

(b) For $\beta_1, \beta_2 \in \mathbb{R}$, define the continuous (\mathbb{P}, \mathbb{F}) -martingale $L^{(\beta_1, \beta_2)} := \beta_1 W^1 + \beta_2 W^2$. We define the stochastic exponential $\mathcal{E}(X)$ as follows:

$$\mathcal{E}(X)_t := \exp\left(X_t - X_0 - \frac{1}{2}\langle X \rangle_t\right)$$

Show that for all $\beta_1, \beta_2 \in \mathbb{R}$ the stochastic exponential $Z^{(\beta_1,\beta_2)} := \mathcal{E}(L^{(\beta_1,\beta_2)})$ is a (\mathbb{P}, \mathbb{F}) -martingale on [0, T].

Hint. You can use the following facts: a continuous process integrated with respect to a continuous martingale is a local martingale, a nonnegative local martingale is a supermartingale, and a supermartingale with constant expectation is a true martingale.

The two following questions can be left out. They are a bit more involved mathematically, but are a nice exercise for the use of Girsanov's theorem.

 $(c)^{**}$ For $\beta_1, \beta_2 \in \mathbb{R}$, define by $d\mathbb{Q}^{(\beta_1,\beta_2)} = Z_T^{(\beta_1,\beta_2)} d\mathbb{P}$ a probability measure $\mathbb{Q}^{(\beta_1,\beta_2)}$ which is equivalent to \mathbb{P} on \mathcal{F}_T . Fix $\beta_1, \beta_2 \in \mathbb{R}$. Using Girsanov's theorem (Theorem 6.2.3 in the lecture notes), show that the two processes $\widetilde{W}_t^1 := W_t^1 - \beta_1 t$ and $\widetilde{W}_t^2 := W_t^2 - \beta_2 t, t \in [0,T]$, are local $(\mathbb{Q}^{(\beta_1,\beta_2)}, \mathbb{F})$ -martingales. Conclude that

$$\widetilde{B}^1 := \widetilde{W}^1 \quad \text{and} \quad \widetilde{B}^2_t := B^2_t - (\alpha \beta_1 + \sqrt{1 - \alpha^2} \beta_2)t, \quad t \in [0, T],$$

are local $(\mathbb{Q}^{(\beta_1,\beta_2)},\mathbb{F})$ -martingales as well.

Remark. One can show that \widetilde{W}^1 and \widetilde{W}^2 are *independent* Brownian motions under $\mathbb{Q}^{(\beta_1,\beta_2)}$ and correspondingly that \widetilde{B}^1 and \widetilde{B}^2 are *correlated* Brownian motions under $\mathbb{Q}^{(\beta_1,\beta_2)}$.

 $(d)^{**}$ What conditions on $\beta_1, \beta_2 \in \mathbb{R}$ make the proces X^1 respectively X^2 a $(\mathbb{Q}^{(\beta_1,\beta_2)}, \mathbb{F})$ -martingale?

Exercise 12-4. Let T > 0 denote a fixed time horizon and let $W = (W_t)_{t \in [0,T]}$ be a Brownian motion on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let $\mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]}$ be the filtration generated by W

Please see next sheet!

Mathematical Foundations For Finance

and augmented by the \mathbb{P} -nullsets in $\sigma(W_s; 0 \le s \le T)$. Consider the Black–Scholes model, where the undiscounted bank account price process $\widetilde{S}^0 = (\widetilde{S}^0_t)_{t \in [0,T]}$ and the undiscounted stock price process $\widetilde{S}^1 = (\widetilde{S}^1_t)_{t \in [0,T]}$ are given by

$$\frac{\mathrm{d}\widetilde{S}^0_t}{\widetilde{S}^0_t} = r\,\mathrm{d}t \quad \text{and} \quad \frac{\mathrm{d}\widetilde{S}^1_t}{\widetilde{S}^1_t} = \mu\,\mathrm{d}t + \sigma\,\mathrm{d}W_t\,,$$

where $r, \mu \in \mathbb{R}$ and $\sigma > 0$ as well as $\widetilde{S}_0^0 = 1$ and $\widetilde{S}_0^1 > 0$. Denote by \mathbb{Q}^* the unique equivalent martingale measure for $S^1 := \widetilde{S}^1 / \widetilde{S}^0$ on \mathcal{F}_T .

(a) Hedge the square option, i.e., find (V_0, ϑ) such that

$$V_0 + \int_0^T \vartheta_u \, \mathrm{d} S_u^1 = \frac{(\widetilde{S}_T^1)^2}{\widetilde{S}_T^0}.$$

Hint. Look for a representation result under \mathbb{Q}^* , not under \mathbb{P} . The formula $\mathbb{E}\left[e^{uX}\right] = e^{\frac{1}{2}u^2\sigma^2}$ for $X \sim \mathcal{N}(0, \sigma^2)$ and $u \in \mathbb{R}$ may be useful.

(b) Hedge the *inverted option*, i.e., find $(\overline{V}_0, \overline{\vartheta})$ such that

$$\overline{V}_0 + \int_0^T \overline{\vartheta}_u \, \mathrm{d} S^1_u = \frac{1}{\widetilde{S}^0_T \widetilde{S}^1_T}.$$