Mathematical Foundations For Finance

Exercise Sheet 2

Please hand in by Wednesday, 01/10/2014, 13:00, into the assistant's box next to office HG E 65.2.

Exercise 2-1. Consider a financial market $(\tilde{S}^0, \tilde{S}^1)$ with time horizon $T \ge 2$ consisting of a bank account and one stock defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Assume that $\tilde{S}_0^1 = 1$ and $\tilde{S}_k^1 > 0$ \mathbb{P} -a.s. for all $k = 0, \ldots, T$. Fix thresholds $0 < \ell < 1 < u$ and define

$$\sigma := \inf\{k = 0, \dots, T : S_k^1 \le \ell\} \land T,\tag{1}$$

$$\tau := \inf\{k = \sigma, \dots, T : S_k^1 \ge u\} \wedge T,\tag{2}$$

where we agree that $\inf \emptyset = +\infty$. Moreover, for k = 0, ..., T define

$$\vartheta_k := \mathbf{1}_{\{\sigma < k \le \tau\}} \,. \tag{3}$$

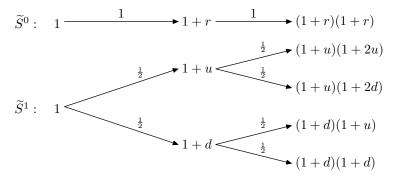
Finally define the filtration $\mathbb{F} = (\mathcal{F}_k)_{0 \le k \le T}$ by $\mathcal{F}_0 = \{\emptyset, \Omega\}$, and $\mathcal{F}_k = \sigma\left(\{\tilde{S}_i^1, i \le k\}\right)$.

(a) Show that σ and τ are stopping times, i.e. that for all k = 0, ..., T, we have

$$\{\sigma \le k\}, \ \{\tau \le k\} \in \mathcal{F}_k \,. \tag{4}$$

- (b) Show that ϑ is a real-valued predictable process with $\vartheta_0 = \vartheta_1 = 0$.
- (c) Construct φ^0 such that $\varphi := (\varphi^0, \vartheta)$ is a self-financing strategy with $V_0(\varphi) = 0$ and derive a formula for the (discounted) value process $V(\varphi)$ only involving the discounted stock price S^1 and the stopping times σ and τ .
- (d) Describe the trading strategy φ in words.

Exercise 2-2. Consider a financial market $(\tilde{S}^0, \tilde{S}^1)$ given by the following trees, where the numbers beside the branches denote transition probabilities:



Intuitively, this means that the volatility of \tilde{S}^1 increases after a stock price increase in the first period. Assume that $u, r \ge 0$ and $-0.5 < d \le 0$.

- (a) Construct for this setup a multiplicative model consisting of a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a filtration $\mathbb{F} = (\mathcal{F}_k)_{k=0,1,2}$, two random variables Y_1 and Y_2 and two adapted stochastic processes \tilde{S}^0 and \tilde{S}^1 such that $\tilde{S}_k^1 = \prod_{j=1}^k Y_j$ for k = 0, 1, 2.
- (b) For which values of u and d are Y_1 and Y_2 uncorrelated?

Mathematical Foundations For Finance

- (c) For which values of u and d are Y_1 and Y_2 independent?
- (d) For which values of u, r and d is the discounted stock process S^1 a \mathbb{P} -martingale?

Exercise 2-3. Let $(\tilde{S}^0, \tilde{S}^1)$ be an *i.i.d. returns model* with T = 3 and assume that $\tilde{S}_0^1 = 1$. 1. Moreover, assume that r = 0.01 and that $\log Y_k$ is *two-sided exponentially distributed* with parameter $\lambda \in (0, \infty)$, i.e. the probability distribution function (pdf) of $\log Y_1$ is given by $f(y) = \frac{\lambda}{2} \exp(-\lambda|y|), y \in \mathbb{R}$. Define σ, τ, ϑ and φ as in Exercise 2-1 and let $\ell = 0.5$ and u = 1.5.

- (a) For $\lambda = 2$, calculate $\mathbb{P}[\sigma = 1]$ and $\mathbb{P}[\tau = 2]$.
- (b) Show that the trading strategy φ is *admissible* for all $\lambda \in (0, \infty)$ and that the trading strategy $-\varphi$ is *not* admissible for any $\lambda \in (0, \infty)$.

Hint. You may use that $V_k(\varphi) = S^1_{\tau \wedge k} - S^1_{\sigma \wedge k}$ for $k = 0, \ldots, 3$.

(c) For which $\lambda \in (0, \infty)$ is the discounted stock price S^1 a \mathbb{P} -martingale?

Exercise 2-4. Consider the market of Exercise 2-1. Assume, that the interest rate r is equal to 0, the riskless asset's value is therefore $\tilde{S}_k^0 \equiv 1$, $\forall \ 0 \leq k \leq T$, and that the price of the risky asset follows a binomial model :

$$\tilde{S}_k^1 = S_k^1 = \prod_{i=1}^{\kappa} Y_i,$$

where the $(Y_i)_{1 \leq i \leq T}$ are i.i.d. random variables taking values in $\{1 + y_d, 1 + y_u\}$, the two values having probability $\frac{1}{2}$.

Let T = 100, $y_d = -0.1$, $y_u = 0.1$, u = 1.2, l = 0.9. Use the software R to simulate the following :

- (a) a path of the risky asset price,
- (b) for this path, the corresponding self-financing strategy defined in Exercise 2-1 c),
- (c) the value process of this strategy.
- (d) Finally plot these different processes on the same graph.