Mathematical Foundations For Finance

Exercise Sheet 3

Please hand in by Wednesday, 8/10/2014, 13:00, into the assistant's box next to office HG E 65.2.

Exercise 3-1. Let $(\tilde{S}^0, \tilde{S}^1)$ be a *binomial model*. More precisely, the price processes of the assets are defined as follows :

$$\widetilde{S}_{k}^{0} = (1+r)^{k} \quad \text{for } k \ge 0$$
$$\widetilde{S}_{k+1}^{1} = Y_{k+1} \quad \text{for } k \ge 0,$$

where the Y_k 's are i.i.d, taking value 1 + u with probability $p \in (0, 1)$ and 1 + d with probability 1 - p. Assume furthermore that u > d.

- (a) Suppose that $r \leq d$. Show that in this case the market $(\tilde{S}^0, \tilde{S}^1)$ admits *arbitrage* by explicitly constructing an *arbitrage opportunity*.
- (b) Suppose that $r \ge u$. Show that also in this case the market $(\tilde{S}^0, \tilde{S}^1)$ admits arbitrage again by explicitly constructing an arbitrage opportunity.

Exercise 3-2. Let $(\widetilde{S}^0, \widetilde{S}^1)$ be a *trinomial model*. This is like a binomial model a special case of a *multinomial model*, and the distribution of Y_k under \mathbb{P} is given by

	1+d	with probability p_1
$Y_k = \langle$	1+m	with probability p_2
	1+u	with probability p_3

where p_1 , p_2 , $p_3 > 0$, $p_1 + p_2 + p_3 = 1$ and -1 < d < m < u. Here d, m and u are mnemonics for down, middle and up. Assume that d = -0.01, m = 0.01, u = 0.03 and r = 0.01.

- (a) For T = 1, give a parametrisation of all equivalent martingale measures (EMMs) for S^1 . *Hint.* A probability measure \mathbb{Q} equivalent to \mathbb{P} on \mathcal{F}_1 can be uniquely described by a probability vector $(q_1, q_2, q_3) \in (0, 1)^3$, where $q_k = \mathbb{Q}[Y_1 = 1 + y_k]$, k = 1, 2, 3, using the notation $y_1 := d$, $y_2 := m$ and $y_3 := u$.
- (b) For T = 2, give a parametrisation of all equivalent martingale measures (EMMs) for S^1 . Hint. A probability measure \mathbb{Q} equivalent to \mathbb{P} on \mathcal{F}_2 can be uniquely described by four probability vectors (q_1, q_2, q_3) , $(q_{j,1}, q_{j,2}, q_{j,3}) \in (0, 1)^3$, j = 1, 2, 3, where $q_j = \mathbb{Q}[Y_1 = 1 + y_j]$ and $q_{j,k} = \mathbb{Q}[Y_2 = 1 + y_k | Y_1 = 1 + y_j]$, j, k = 1, 2, 3, using the notation $y_1 := d$, $y_2 := m$ and $y_3 := u$.

Exercise 3-3. Consider a financial market $(\tilde{S}^0, \tilde{S}^1, \tilde{S}^2)$ consisting of a bank account and two stocks. The stock price movements of \tilde{S}^1 and \tilde{S}^2 are described by the following tree, where the numbers beside the branches denote transition probabilities.

Assume that the risk-free rate is given by r = 0.01.

(a) Show that the financial sub-markets $(\tilde{S}^0, \tilde{S}^1)$ and $(\tilde{S}^0, \tilde{S}^2)$ are free of arbitrage by constructing the equivalent martingale measures \mathbb{Q}^1 for S^1 and \mathbb{Q}^2 for S^2 .

Hint. Write down the tree for the discounted stock prices S^1 and S^2 .

(b) Show that the market $(\tilde{S}^0, \tilde{S}^1, \tilde{S}^2)$ is not free of arbitrage by explicitly constructing an *arbitrage opportunity*.

Hint. Calculate the expectation of S_1^2 under the equivalent martingale measure \mathbb{Q}^1 for S^1 .

(c) By which number do you have to replace 105.04 in the stock price movement of \tilde{S}^1 so that the market $(\tilde{S}^0, \tilde{S}^1, \tilde{S}^2)$ is free of arbitrage?

Exercise 3-4. We consider a two periods binomial model, with two assets: one riskless asset with zero interest rate whose price is $S^0 \equiv \tilde{S}^0 \equiv 1$, and a risky asset with price process given below. In this market we consider as well a call option on the risky asset with payoff H given by:

$$H = \left(S_2^1 - K\right)^+.$$

We take here K = 95. The value of the option at maturity is given on the tree.

We want to find a hedging portfolio for this option, i.e. we want to trade dynamically in the stock to replicate perfectly the contingent claim. In other word, we want to find a self-financing strategy $\phi = (V_0, \theta)$ with initial value V_0 such that $V_2(\phi) = H$. We work on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with the filtration $\mathbb{F} = (\mathcal{F}_k)_{k \in \{0,1,2\}}$ generated by the risky asset (we assume \mathcal{F}_0 trivial).

- (a) Find the self-financing replicating portfolio.
- (b) Set the linear system that characterize the replicating strategy and use R to solve it.
- (c) Simulate the price process of the risky asset and the self-financing portfolio that replicates the option.

For further information please see www.math.ethz.ch/education/bachelor/lectures/hs2014/math/mff/ and www.math.ethz.ch/assistant_groups/gr3/praesenz.