Mathematical Foundations For Finance
 Exercise Sheet 3

Please hand in by Wednesday, 8/10/2014, 13:00, into the assistant's box next to office HG E 65.2.

Exercise 3-1. Let $\left(\widetilde{S}^{0}, \widetilde{S}^{1}\right)$ be a binomial model. More precisely, the price processes of the assets are defined as follows :

$$
\begin{aligned}
\widetilde{S}_{k}^{0}=(1+r)^{k} & \text { for } k \geqslant 0 \\
\frac{\widetilde{S}_{k+1}^{1}}{\widetilde{S}_{k}^{1}}=Y_{k+1} & \text { for } k \geqslant 0
\end{aligned}
$$

where the Y_{k} 's are i.i.d, taking value $1+u$ with probability $p \in(0,1)$ and $1+d$ with probability $1-p$. Assume furthermore that $u>d$.
(a) Suppose that $r \leq d$. Show that in this case the market $\left(\widetilde{S}^{0}, \widetilde{S}^{1}\right)$ admits arbitrage by explicitly constructing an arbitrage opportunity.
(b) Suppose that $r \geq u$. Show that also in this case the market ($\left.\widetilde{S}^{0}, \widetilde{S}^{1}\right)$ admits arbitrage again by explicitly constructing an arbitrage opportunity.

Exercise 3-2. Let $\left(\widetilde{S}^{0}, \widetilde{S}^{1}\right)$ be a trinomial model. This is like a binomial model a special case of a multinomial model, and the distribution of Y_{k} under \mathbb{P} is given by

$$
Y_{k}= \begin{cases}1+d & \text { with probability } p_{1} \\ 1+m & \text { with probability } p_{2} \\ 1+u & \text { with probability } p_{3}\end{cases}
$$

where $p_{1}, p_{2}, p_{3}>0, p_{1}+p_{2}+p_{3}=1$ and $-1<d<m<u$. Here d, m and u are mnemonics for down, middle and up. Assume that $d=-0.01, m=0.01, u=0.03$ and $r=0.01$.
(a) For $T=1$, give a parametrisation of all equivalent martingale measures (EMMs) for S^{1}.

Hint. A probability measure \mathbb{Q} equivalent to \mathbb{P} on \mathcal{F}_{1} can be uniquely described by a probability vector $\left(q_{1}, q_{2}, q_{3}\right) \in(0,1)^{3}$, where $q_{k}=\mathbb{Q}\left[Y_{1}=1+y_{k}\right], k=1,2$, 3, using the notation $y_{1}:=d, y_{2}:=m$ and $y_{3}:=u$.
(b) For $T=2$, give a parametrisation of all equivalent martingale measures (EMMs) for S^{1}.

Hint. A probability measure \mathbb{Q} equivalent to \mathbb{P} on \mathcal{F}_{2} can be uniquely described by four probability vectors $\left(q_{1}, q_{2}, q_{3}\right),\left(q_{j, 1}, q_{j, 2}, q_{j, 3}\right) \in(0,1)^{3}, j=1,2,3$, where $q_{j}=\mathbb{Q}\left[Y_{1}=1+y_{j}\right]$ and $q_{j, k}=\mathbb{Q}\left[Y_{2}=1+y_{k} \mid Y_{1}=1+y_{j}\right], j, k=1,2,3$, using the notation $y_{1}:=d, y_{2}:=m$ and $y_{3}:=u$.

Exercise 3-3. Consider a financial market $\left(\widetilde{S}^{0}, \widetilde{S}^{1}, \widetilde{S}^{2}\right)$ consisting of a bank account and two stocks. The stock price movements of \widetilde{S}^{1} and \widetilde{S}^{2} are described by the following tree, where the numbers beside the branches denote transition probabilities.

Mathematical Foundations For Finance

Assume that the risk-free rate is given by $r=0.01$.
(a) Show that the financial sub-markets $\left(\widetilde{S}^{0}, \widetilde{S}^{1}\right)$ and $\left(\widetilde{S}^{0}, \widetilde{S}^{2}\right)$ are free of arbitrage by constructing the equivalent martingale measures \mathbb{Q}^{1} for S^{1} and \mathbb{Q}^{2} for S^{2}.
Hint. Write down the tree for the discounted stock prices S^{1} and S^{2}.
(b) Show that the market $\left(\widetilde{S}^{0}, \widetilde{S}^{1}, \widetilde{S}^{2}\right)$ is not free of arbitrage by explicitly constructing an arbitrage opportunity.
Hint. Calculate the expectation of S_{1}^{2} under the equivalent martingale measure \mathbb{Q}^{1} for S^{1}.
(c) By which number do you have to replace 105.04 in the stock price movement of \widetilde{S}^{1} so that the market $\left(\widetilde{S}^{0}, \widetilde{S}^{1}, \widetilde{S}^{2}\right)$ is free of arbitrage?

Exercise 3-4. We consider a two periods binomial model, with two assets: one riskless asset with zero interest rate whose price is $S^{0} \equiv \tilde{S}^{0} \equiv 1$, and a risky asset with price process given below. In this market we consider as well a call option on the risky asset with payoff H given by:

$$
H=\left(S_{2}^{1}-K\right)^{+}
$$

We take here $K=95$. The value of the option at maturity is given on the tree.

We want to find a hedging portfolio for this option, i.e. we want to trade dynamically in the stock to replicate perfectly the contingent claim. In other word, we want to find a self-financing strategy $\phi \hat{=}\left(V_{0}, \theta\right)$ with initial value V_{0} such that $V_{2}(\phi)=H$. We work on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with the filtration $\mathbb{F}=\left(\mathcal{F}_{k}\right)_{k \in\{0,1,2\}}$ generated by the risky asset (we assume \mathcal{F}_{0} trivial).
(a) Find the self-financing replicating portfolio.
(b) Set the linear system that characterize the replicating strategy and use R to solve it.
(c) Simulate the price process of the risky asset and the self-financing portfolio that replicates the option.

