Mathematical Foundations For Finance
 Exercise Sheet 6

Please hand in by Wednesday, 29/10/2014, 13:00, into the assistant's box next to office HG E 65.2.

Exercise 6-1. Consider a discounted model for a financial market which is free of arbitrage. Suppose we enlarge the financial market S by introducing a new financial instrument which can be bought or sold at price $a \in \mathbb{R}$ at time $t=0$ and yields a random cash flow f at time $t=T$. This means that we are allowed to trade dynamically in S, i.e. we can buy and sell stocks at prices S_{t} at all times $t=0, \ldots, T$, but we can only trade statically in f, i.e. we can only buy or sell the new instrument per unit at price a and hold this position until T. We denote this market by ($S,(f, a)$). The goal of this exercise is to introduce and study the possible arbitrage-free prices a for f. Formally, let $(\Omega, \mathcal{F}, \mathbb{P})$ be a finite probability space with a filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t=0, \ldots, T}$ and assume for simplicity that $\mathcal{F}_{0}=\{\emptyset, \Omega\}$. Let $S=\left(S_{t}\right)_{t=0, \ldots, T}$ be a discounted model for a financial market which is free of arbitrage, i.e. satisfies (NA), and let $f \in L_{+}^{0}\left(\mathcal{F}_{T}\right)$ be a contingent claim. For $a \in \mathbb{R}$, we first want to define what is meant by an arbitrage opportunity for the enlarged market $(S,(f, a))$. To do so, we consider all possible positions at time T that one can obtain via dynamicstatic trading with respect to S and f with zero initial investment. A moment's reflection reveals that these positions are those of the form

$$
\begin{equation*}
G_{T}(\vartheta)+\lambda(f-a) \tag{1}
\end{equation*}
$$

where ϑ is a predictable process representing a self-financing trading strategy $\varphi=(0, \vartheta)$ and $\lambda \in \mathbb{R}$ represents the number of units of f bought or sold at $t=0$. In accordance with the usual definition of (NA), we say that the market $(S,(f, a))$ is free of arbitrage if there exists no $\varphi=(0, \vartheta)$ and no $\lambda \in \mathbb{R}$ such that

$$
\begin{equation*}
G_{T}(\vartheta)+\lambda(f-a) \geq 0 \quad \mathbb{P} \text {-a.s.and } \quad \mathbb{P}\left[G_{T}(\vartheta)+\lambda(f-a)>0\right]>0 \tag{2}
\end{equation*}
$$

We say that a is an arbitrage-free price for f if the extended market $(S,(f, a))$ is free of arbitrage. Similarly to Proposition 2.1.1 part 4) in the lecture notes, we define $\mathcal{G}^{f, a}$ to be the set of all random variables of the form (11). We then obtain the equivalent concise definition that a is an arbitrage-free price for the enlarged market $(S,(f, a))$ if and only if

$$
\mathcal{G}^{f, a} \cap L_{+}^{0}\left(\mathcal{F}_{T}\right)=\{\mathbf{0}\}
$$

(a) Show that if a is an arbitrage-free price for f, then there exists an equivalent probability measure $\mathbb{Q} \approx \mathbb{P}$ such that

$$
\mathbb{E}_{\mathbb{Q}}[g]=0 \quad \text { for all } g \in \mathcal{G}^{f, a}
$$

Conclude that
(i) \mathbb{Q} is an equivalent martingale measure for S, i.e. $\mathbb{Q} \in \mathbb{P}_{e}(S)$.
(ii) $\mathbb{E}_{\mathbb{Q}}[f]=a$.

Hint. Modify the proof of Theorem 2.2.1 in the lecture notes appropriately. You need not copy the whole proof; just indicate where and which changes need to be made.
In the next step, we want to characterise the arbitrage-free prices for f. To that end, we define the two quantities

$$
\bar{\pi}(f):=\sup _{\mathbb{Q} \in \mathbb{P}_{e}(S)} \mathbb{E}_{\mathbb{Q}}[f], \quad \underline{\pi}(f):=\inf _{\mathbb{Q} \in \mathbb{P}_{e}(S)} \mathbb{E}_{\mathbb{Q}}[f]
$$

(b) Prove that if $\underline{\pi}(f)=\bar{\pi}(f)$, then f is attainable in the market S at price $a=\underline{\pi}(f)=\bar{\pi}(f)$.

Hint. Use Theorem 3.1.2 in the lecture notes.
(c) Prove that if $\underline{\pi}(f)<\bar{\pi}(f)$, then a is an arbitrage-free price if and only if

$$
\underline{\pi}(f)<a<\bar{\pi}(f) .
$$

Hint. Use Theorem 3.1.2 in the lecture notes and part (a)

Exercise 6-2. Consider the trinomial model with $r=0.05$ and $T=1$. Suppose that the evolution of $\left(\widetilde{S}^{0}, \widetilde{S}^{1}\right)$ is given by

$$
\widetilde{S}_{0}^{1}=S_{0}^{1}=s_{0}=80, \quad \widetilde{S}_{1}^{1}=\left\{\begin{array}{lr}
120 & \text { with probability } 0.2 \\
90 & 0.3 \\
60 & 0.5
\end{array}, \text { and } \widetilde{S}_{k}^{0}=(1+r)^{k}, \text { for } k \in\{0,1\}\right.
$$

(a) Compute the set of all arbitrage-free prices for the European call option $\widetilde{H}=\left(\widetilde{S}_{1}^{1}-80\right)^{+}$.
(b) Find the set of all attainable contingent claims.
(c) Is it possible to replicate the previous call option by a self-financing portfolio?

Exercise 6-3. Consider the trinomial model with $r=0.2$ and $T=1$. Suppose that the evolution of \widetilde{S}^{1} is given by

$$
S_{0}^{1}=s_{0}, \quad \widetilde{S}_{1}^{1}=\left\{\begin{array}{l}
s_{0}(1+u) \\
s_{0}(1+m) \\
s_{0}(1+d)
\end{array}\right.
$$

with $u=0.6, m=r, d=-0.2$. Let $\widetilde{H}=\mathbb{1}_{\left\{S_{1}^{1}<s_{0}\right\}}$ and denote by $\mathcal{P}=\mathbb{P}_{e}(S)$ the set of all equivalent martingale measures for the discounted price process S^{1}.
(a) Compute $V_{0}:=\sup _{\mathbb{Q} \in \mathcal{P}} \mathbb{E}_{\mathbb{Q}}[H]$ for the discounted payoff H.
(b) Show that $V_{0}=\mathbb{E}_{\tilde{\mathbb{Q}}}[H]$ for some martingale measure $\tilde{\mathbb{Q}}$, but $\tilde{\mathbb{Q}}$ is not equivalent to \mathbb{P}.
(c) Deduce that H is not attainable.

Exercise 6-4. We consider a binomial market model with N periods on a period of time of length T. The riskless asset grows at a rate $r=\frac{R T}{N}$, where R is the (constant) instantaneous interest rate, and the risky asset's price goes up by a factor $1+u$ and down by a factor $1+d$ such that

$$
\log \left(\frac{1+u}{1+r}\right)=-\log \left(\frac{1+d}{1+r}\right)=\sigma \sqrt{\frac{T}{N}}
$$

for some constant σ. The starting values (at time $t=0$) of both the assets is $1 \mathbb{P}$-a.s. The unique equivalent martingale measure \mathbb{P}^{*} for S^{1} is such that the $\left(Y_{i}\right)_{i \in\{1,2 \ldots, N\}}$ are i.i.d. and given by

$$
\mathbb{P}^{*}\left[Y_{i}=1+d\right]=1-\mathbb{P}^{*}\left[Y_{i}=1+u\right]=\frac{u-r}{u-d}=p^{*}
$$

We study the limiting case for $N \rightarrow \infty$.
(a) Let $\left(Z_{n}\right)_{n \in \mathbb{N}}$ be a sequence of random variables of the form :

$$
Z_{n}=\sum_{i=1}^{n} X_{i}^{n}
$$

for $n \in \mathbb{N}, X_{i}^{n} \in\left\{-\sigma \sqrt{\frac{T}{n}}, \sigma \sqrt{\frac{T}{n}}\right\}$ and the variables $\left(X_{i}^{n}\right)_{i \in\{1,2, \ldots n\}}$ are independent identically distributed with mean μ_{n}. The constants μ_{n} are such that $\lim _{n \rightarrow \infty} n \mu_{n}=\mu$.
Prove that the sequence $\left(Z_{n}\right)_{n \in \mathbb{N}}$ converges in law to a gaussian random variable with mean μ and variance $\sigma^{2} T$.
Hint. Use the fact that pointwise convergence of the characteristic functions of a sequence of random variables (if the limiting function ϕ is continuous at 0) implies the convergence in law of this sequence of random variables to a random variable whose characteristic function is ϕ.
(b) We consider a European put option, with strike K and maturity T. Show that its value at time 0 is given by

$$
V_{0}^{P, N}=\mathbb{E}^{*}\left[\left(\frac{K}{(1+r)^{N}}-S_{0}^{1} \exp \left(Z_{N}\right)\right)^{+}\right]
$$

where \mathbb{E}^{*} denotes the expectation under \mathbb{P}^{*}, and Z_{N} is a random variable that you will define.
(c) Use part a) to prove the following asymptotic price :

$$
\lim _{N \rightarrow \infty} V_{0}^{P, N}=K e^{-R T} \Phi\left(-d_{2}\right)-S_{0}^{1} \Phi\left(-d_{1}\right)
$$

where $d_{1}=\frac{\log \left(\frac{S_{0}}{K}\right)+R T+\frac{\sigma^{2} T}{2}}{\sigma \sqrt{T}}, d_{2}=d_{1}-\sigma \sqrt{T}$ and Φ is the cumulative distribution function of a standard normal random variable.
Hint. Use the value of p^{*} and of u to prove that $\lim _{N \rightarrow \infty} N \mathbb{E}^{*}\left[\log \left(\frac{Y_{i}}{1+r}\right)\right]=-\frac{\sigma^{2} T}{2}$
Remark. With the put-call parity formula, one gets easily the asymptotic price of a call for large N. At the end of the course you will see as well that this limit is the price that one obtains in the Black-Scholes model.
(d) Take $T=100, N=1000, S_{0}^{1}=100, K=80, R=0.01$. The put option with strike K and maturity T is sold on the market for 10 . Back out with R the parameter σ and then u.
(e) For this last question, let us use real life figures. We consider the Exchange Traded Fund S\&P 500. Look for the current price of this fund, and the price of the put with strike $195 \$$ and maturity $19^{\text {th }}$ december 2015 (the identifier of the option is SPY151219P00195000). Use the approximation $R=0$ (not very far from the actual over-night LIBOR rates). Back out the parameter σ and u from the formula obtained in c).

