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Exercise 7-1. Let (S̃0, S̃1) be a binomial model with S̃1
0 := 1 and u > r > d > −1. Denote by

(Ŝ0, Ŝ1) the market discounted with S̃1, i.e.

Ŝ0 :=
S̃0

S̃1
and Ŝ1 :=

S̃1

S̃1
≡ 1 .

(a) Show that there exists a unique equivalent martingale measure Q∗∗ for Ŝ0.

(b) Let Q∗ be the unique equivalent martingale measure for S1. Show that the density of Q∗∗
with respect to Q∗ on FT is given by

dQ∗∗

dQ∗
= S1

T .

Hint. Use Corollary 2.1.4 in the lecture notes.

(c) Show that for an undiscounted payoff H̃ ∈ L0
+(FT ) we have

S̃0
k EQ∗

[
H̃

S̃0
T

∣∣∣∣∣Fk
]

= S̃1
k EQ∗∗

[
H̃

S̃1
T

∣∣∣∣∣Fk
]
, k = 0, . . . , T .

This formula shows that the risk-neutral pricing method is invariant under a so-called change
of numéraire.

Hint. Use Bayes’ formula (Lemma 2.3.1 2) in the lecture notes).

Exercise 7-2. An American option with maturity T and payoff process U = (Uk)k=0,...,T , where
U is an adapted process, is a contract between buyer and seller where the buyer has the right to
stop the contract at any time 0 ≤ k ≤ T and then to receive the (discounted) payoff Uk. The buyer
is allowed to choose as exercise time for the option any stopping time with values in {0, . . . , T}.
The goal of this exercise is to analyze the corresponding arbitrage-free price of an American option.
With some effort, one can show that the arbitrage-free price process V = (V k)k=0,...,T for an
American option can be expressed by the backward recursive scheme

V T = UT ,

V k = max
{
Uk,EQ

[
V k+1

∣∣Fk]} for k = 0, . . . , T − 1 , (1)

where Q is an equivalent martingale measure for the considered market.

(a) Give an economic argument why (1) is a reasonable.

(b) Show that V is the smallest Q-supermartingale dominating U , i.e., show that

(i) V is a Q-supermartingale such that V k ≥ Uk P-a.s. for all k = 0, . . . , T .

(ii) if V ′ is a Q-supermartingale such that V ′k ≥ Uk P-a.s. for all k = 0, . . . , T , then V ′k ≥ V k
P-a.s. for all k = 0, . . . , T .

Please see next page!



Mathematical Foundations For Finance

(c) Assume now that r > 0 so that the bank account is strictly increasing.

(i) Show that in the put option case, i.e., Uj = 1
(1+r)j (K̃ − S̃1

j )+, the price of an American

option at time 0 is greater that the price of a European option, for large enough strikes
K̃, i.e.,

V 0 > V
P̃ K̃

T
0 ,

for K̃ large enough, where V
P̃ K̃

T
0 denotes the discounted price at time 0 of a European

put option with maturity T and strike price K̃.

(ii) Show that in the call option case, i.e., Uj = 1
(1+r)j (S̃1

j − K̃)+, the price of the American

call option and the European call option coincide. This means, show that

V 0 = V
C̃K̃

T
0 ,

where V
C̃K̃

T
0 denotes the price at time 0 of an European call option with maturity T and

strike price K̃.

Exercise 7-3. We consider an American option with maturity T and payoff process Z = (Zk)k=0,...,T

on a complete market with pricing measure Q. Assume Z is adapted (or consider the filtration
generated by the payoff process). We want to prove that the price process of the American option
is indeed given by the process U = (Uk)k=0,...,T defined as follows :

UT = ZT

Uk = max (Zk,E [Uk+1|Fn]) , for k ∈ {0, 1, ..., T − 1}.

This process is called the Snell enveloppe of Z. It is the smallest supermartingale that dominates
the process Z as proved in Exercise 7-2.

(a) Define the random variable σ0 = inf{n > 0 | Un = Zn}. Prove that it is a stopping time for
the filtration generated by the payoff process Z.

(b) Prove that the stopped process (Uk∧σ0
)k∈{0,1,...,T} is a martingale.

(c) Define for k ∈ {0, 1, ..., T} the set Tk,T of all stopping times taking values in {k, k+ 1, ..., T}.
Prove that σ0 satisfies :

U0 = E [Zσ0
| F0] = sup

τ∈T0,T
E [Zσ0

| F0]

and more generally :

Uk = E [Zσk
| Fk] = sup

τ∈Tk,T

E [Zσk
| Fk] for k ∈ {0, 1, ..., T},

where : σk = inf{n > k | Un = Zn}.

Exercise 7-4. In this exercise we want to compare the price of a European call option and an
American call option over time (and verify that the price process of these two options are indeed
the same). We consider a binomial model with T = 4 periods, S1

0 = 100, K = 80, u = −d = 0.1
and r = 0.

(a) Simulate the binomial market price tree and compute the option prices at each node as well
as the replicating strategy.
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(b) Modify your code to compute the price of a European and an American put option over time
as well as their replicating strategies. What do you observe ?

For further information please see
www.math.ethz.ch/education/bachelor/lectures/hs2014/math/mff/ and

www.math.ethz.ch/assistant_groups/gr3/praesenz .

www.math.ethz.ch/education/bachelor/lectures/hs2014/math/mff/
www.math.ethz.ch/assistant_groups/gr3/praesenz

