Mathematical Foundations For Finance
 Exercise Sheet 8

Please hand in by Wednesday, 12/11/2014, 13:00, into the assistant's box next to office HG E 65.2.

Exercise 8-1. We work on a binomial model; the risky and riskless asset have the following price processes :

$$
\widetilde{S_{k}^{1}}=\widetilde{S_{0}^{1}} \prod_{i=1}^{k} Y_{i}, \text { and, } \widetilde{S_{k}^{0}}=(1+r)^{k} \text { for } k \in\{0,1, \ldots, T\},
$$

where the Y_{i} 's are i.i.d and take values in $\{1+d, 1+u\}$. Consider a contingent claim of the form $\widetilde{H}=\widetilde{h}\left(\widetilde{S}_{T}^{1}\right)$, where $\widetilde{h}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a Borel measurable function. For simplicity, we denote by \mathbb{Q} the unique martingale measure for the discounted model S^{1}. By Corollary 2.2.3 in the lecture notes, this model is arbitrage-free and complete. Therefore, there exists a self-financing trading strategy $\varphi=\left(V_{0}^{H}, \vartheta\right)$ such that

$$
\widetilde{V}_{T}^{\widetilde{H}}=\widetilde{S}_{T}^{0}\left(V_{0}^{H}+G_{T}(\vartheta)\right)=\widetilde{H} \quad \mathbb{P} \text {-a.s. }
$$

(a) Show that there exists a measurable function $\widetilde{v}:\{0, \ldots, T\} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that

$$
\widetilde{V}_{k}^{\widetilde{H}}=\widetilde{v}\left(k, \widetilde{S}_{k}^{1}\right) \quad \mathbb{P} \text {-a.s. for } k=0, \ldots, T
$$

Moreover, show that this value function \widetilde{v} fulfills the recursive scheme

$$
\begin{cases}\widetilde{v}(T, x) & =\widetilde{h}(x), \\ \widetilde{v}(k-1, x) & =\frac{q \widetilde{v}(k, x(1+u))+(1-q) \widetilde{v}(k, x(1+d))}{1+r} \quad \text { for } k=1, \ldots, T, x \in \mathbb{R}_{+}\end{cases}
$$

(b) Show that there exists a measurable function $\widetilde{\xi}:\{1, \ldots, T\} \times \mathbb{R}_{+} \rightarrow \mathbb{R}$ such that

$$
\vartheta_{k}=\widetilde{\xi}\left(k, \widetilde{S}_{k-1}^{1}\right) \quad \mathbb{P} \text {-a.s. for } k=1, \ldots, T
$$

Moreover, show that the function $\widetilde{\xi}$ is given by

$$
\widetilde{\xi}(k, x)=\frac{\widetilde{v}(k, x(1+u))-\widetilde{v}(k, x(1+d))}{(u-d) x}
$$

(c) If the function \widetilde{h} is convex, show that for each k the function $x \mapsto \widetilde{v}(k, x)$ is convex as well. If \widetilde{h} is increasing, show that $\widetilde{\xi} \geq 0$. What is the financial interpretation of the latter property?

Exercise 8-2. Let $\left(\widetilde{S}^{0}, \widetilde{S}^{1}\right)$ be a one-period trinomial model on the canonical space and assume that $u>m>d>-1, r=m$ and $\widetilde{S}_{0}^{1}=s_{0}>0$.
(a) Compute the set of all arbitrage-free prices for a binary cash-or-nothing call option with strike $s_{0}(1+r)$ whose payoff is given by

$$
\widetilde{H}^{b}:=\mathbb{1}_{\left\{\widetilde{S}_{1}^{1}>s_{0}(1+r)\right\}} .
$$

Show that \widetilde{H}^{b} is not attainable in this market.
Hint: Use Theorem 3.1.2 in the lecture notes.

Mathematical Foundations For Finance

(b) Let $\widetilde{H}^{C(K)}$ be a European call option with strike $K \geq 0$ whose payoff is given by

$$
\widetilde{H}^{C(K)}:=\left(\widetilde{S}_{1}^{1}-K\right)^{+} .
$$

Determine all $K \geq 0$ for which $\widetilde{H}^{C(K)}$ is attainable.
(c) Let $\widetilde{H} \in L_{+}^{0}\left(\mathcal{F}_{1}\right)$ be an undiscounted payoff that is attainable with $V_{0}^{\widetilde{H}} \neq 0$. Define the return of \widetilde{H} by

$$
R^{\widetilde{H}}:=\frac{\widetilde{H}-V_{0}^{\widetilde{H}}}{V_{0}^{\widetilde{H}}}=\frac{\widetilde{H}}{V_{0}^{\widetilde{H}}}-1
$$

Show that every equivalent martingale measure \mathbb{Q} for S^{1} satisfies

$$
\mathbb{E}_{\mathbb{Q}}\left[R^{\widetilde{H}}\right]=r \quad \text { and } \quad \mathbb{E}_{\mathbb{P}}\left[R^{\widetilde{H}}\right]=r-\operatorname{Cov}_{\mathbb{P}}\left[\frac{\mathrm{d} \mathbb{Q}}{\mathrm{~d} \mathbb{P}}, R^{\widetilde{H}}\right]
$$

where $\operatorname{Cov}_{\mathbb{P}}$ denotes the covariance under \mathbb{P}.

Exercise 8-3. Let ($\widetilde{S}^{0}, \widetilde{S}^{1}$) be an undiscounted multinomial model with $m \geq 3$ states. Assume that $T=1$ and $y_{1}<r<y_{m}$. Denote by $\mathbb{P}_{e}\left(S^{1}\right)$ the set of all equivalent martingale measures for S^{1} on \mathcal{F}_{1} and let $C: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a convex discounted payoff function.
(a) Show that for all $\mathbb{Q} \in \mathbb{P}_{e}\left(S^{1}\right)$, we have

$$
C\left(S_{0}^{1}\right) \leq \mathbb{E}_{\mathbb{Q}}\left[C\left(S_{1}^{1}\right)\right] \leq \frac{y_{m}-r}{y_{m}-y_{1}} C\left(\frac{1+y_{1}}{1+r} S_{0}^{1}\right)+\frac{r-y_{1}}{y_{m}-y_{1}} C\left(\frac{1+y_{m}}{1+r} S_{0}^{1}\right)
$$

In particular, show that either both inequalities are strict or both equalities. Give an economic interpretation of the above formula.
Hint. Distinguish the two cases that C is linear or not linear on $\left[\frac{1+y_{1}}{1+r} S_{0}^{1}, \frac{1+y_{m}}{1+r} S_{0}^{1}\right]$. Drawing a picture might be useful.
(b) Show that the upper bound in (a) is sharp, i.e.,

$$
\sup _{\mathbb{Q} \in \mathbb{P}_{e}\left(S^{1}\right)} \mathbb{E}_{\mathbb{Q}}\left[C\left(S_{1}^{1}\right)\right]=\frac{y_{m}-r}{y_{m}-y_{1}} C\left(\frac{1+y_{1}}{1+r} S_{0}^{1}\right)+\frac{r-y_{1}}{y_{m}-y_{1}} C\left(\frac{1+y_{m}}{1+r} S_{0}^{1}\right) .
$$

(c) Suppose there exists $k \in\{2, \ldots, m-1\}$ with $y_{k}=r$. Show that the lower bound in (a) is sharp as well, i.e.,

$$
\inf _{\mathbb{Q} \in \mathbb{P}_{e}\left(S^{1}\right)} \mathbb{E}_{\mathbb{Q}}\left[C\left(S_{1}^{1}\right)\right]=C\left(S_{0}^{1}\right)
$$

(d) Is the payoff $H=C\left(S_{1}^{1}\right)$ attainable?

Exercise 8-4. In this exercise we want to compare the price of a European put option and an American put option over time (and verify that the price process of these two options can be different). We consider a binomial model with $T=4$ periods, $S_{0}^{1}=100, K=150, u=-d=0.2$ and $r=0.1$.
(a) Simulate the binomial market price tree and compute the option prices at each node as well as the replicating strategy.
(b) Change the strike to $K=80$. What do you observe ?
(c) Change the strike to $K=50$. What do you observe ?

