Exercise Sheet 14 (with Solutions)

Exercise 14-1. Let T > 0 be a fixed time horizon and $(\Omega, \mathcal{F}, \mathbb{P})$ a complete probability space with filtration $\mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]}$ satisfying the usual assumptions. Let $W = (W_t)_{t \in [0,T]}$ be a (\mathbb{P}, \mathbb{F}) -Brownian motion and $N = (N_t)_{t \in [0,T]}$ an *independent* (\mathbb{P}, \mathbb{F}) -Poisson process with parameter $\lambda > 0$. Consider a discounted stock price $S = (S_t)_{t \in [0,T]}$ defined by

$$S_t := \exp\left(\sigma W_t + \log(1+\kappa)N_t + \left(\mu - \frac{1}{2}\sigma^2 - \kappa\lambda\right)t\right),$$

where $\mu \in \mathbb{R}$, $\kappa > -1$, and $\sigma > 0$.

(a) Use Itô's formula to show that

$$\mathrm{d}S_t = S_{t-} \left(\mu \,\mathrm{d}t + \sigma \,\mathrm{d}W_t + \kappa \,\mathrm{d}\widetilde{N}_t \right), \quad S_0 = 1,$$

where $\widetilde{N}_t := N_t - \lambda t$ is the compensated Poisson process. *Hint.* Define $S_t^c := e^{\sigma W_t + (\mu - 1/2\sigma^2)t}$ and $S_t^d := e^{\log(1+\kappa)N_t - \kappa\lambda t}$ so that $S = S^c S^d$.

(b) Define the strictly positive (\mathbb{P}, \mathbb{F}) -martingale $Z := \mathcal{E}(-\mu/\sigma W)$ and the equivalent probability measure \mathbb{Q} via $d\mathbb{Q}/d\mathbb{P} := Z_T$.

Argue in detail that N is a (\mathbb{Q}, \mathbb{F}) -Poisson process with same parameter λ . Conclude that S is a local (\mathbb{Q}, \mathbb{F}) -martingale with dynamics

$$\mathrm{d}S_t = S_{t-} \left(\sigma \,\mathrm{d}W_t^{\mathbb{Q}} + \kappa \,\mathrm{d}\widetilde{N}_t \right),\,$$

where $(W_t^{\mathbb{Q}})_{t \in [0,T]}, W_t^{\mathbb{Q}} := W_t + \mu/\sigma t$, is a (\mathbb{Q}, \mathbb{F}) -Brownian motion.

Hint. Recall the definition of a Poisson process relative to (\mathbb{P}, \mathbb{F}) and check the conditions separately. You may use the following fact:

A random variable X and a σ -field \mathcal{G} are independent if and only if $\mathbb{E}[f(X) | \mathcal{G}] = \mathbb{E}[f(X)]$ for all bounded Borel functions $f : \mathbb{R} \to \mathbb{R}$.

(c) Let $\alpha \in \mathbb{R}$. Compute $\mathbb{E}_{\mathbb{Q}}[(S_T)^{\alpha}]$.

Solution 14-1. (a) Define (as given in the hint) the two auxiliary processes

$$S_t^c := \exp\left(\sigma W_t + \left(\mu - \frac{1}{2}\sigma^2\right)t\right) \quad \text{and} \quad S_t^d := \exp\left(\log(1+\kappa)N_t - \kappa\lambda t\right). \tag{1}$$

The process S^c is a geometric Brownian motion. By writing $W_t^{(\sigma,\mu)} := \sigma W_t + \mu t$, we have that $S^c = \mathcal{E}(W^{(\sigma,\mu)})$ and hence by Itô's formula:

$$\mathrm{d}S^c = S^c \,\mathrm{d}W^{(\sigma,\mu)} = S^c(\sigma \,\mathrm{d}W + \mu \,\mathrm{d}t). \tag{2}$$

We notice that if $f : \mathbb{R} \to \mathbb{R}$ is in C^2 , $\alpha, \beta \in \mathbb{R}$ and the semimartingale $X = (X_t)_{t \ge 0}$ is given by $X_t = \alpha t + \beta N_t$, then formula (6.1.7) in the lecture notes simplifies to

$$f(X_t) = f(0) + \alpha \int_0^t f'(X_{s-}) \,\mathrm{d}s + \sum_{0 < s \le t} \left(f(X_s) - f(X_{s-}) \right) \,\mathrm{d}s$$

Indeed, using the formula at the bottom of page 89 in the lecture notes and the fact that the quadratic variation process of the compensated Poisson process \widetilde{N} is N, we get: $[X]_t =$ $\sum_{0 < s \le t} \beta^2 \left(\Delta N_s \right)^2 = \sum_{0 < s \le t} (\Delta X_t)^2.$ We obtain:

$$S_t^d = 1 - \kappa \lambda \int_0^t S_{u-}^d du + \sum_{0 < u \le t} \left(S_u^d - S_{u-}^d \right)$$
$$= 1 - \kappa \lambda \int_0^t S_{u-}^d du + \kappa \sum_{0 < u \le t} S_{u-}^d \Delta N_u$$
$$= 1 - \kappa \lambda \int_0^t S_{u-}^d du + \kappa \int_0^t S_{u-}^d dN_u$$
$$= 1 + \kappa \int_0^t S_{u-}^d d\tilde{N}_u.$$

One can also write in differential notation

$$\mathrm{d}S^d = \kappa S^d_- \,\mathrm{d}N.\tag{3}$$

The next step is to apply the product rule to $S = S^c S^d$. To that end, we need to have a formula for $[S^c, S^d]$. By the formula for quadratic variations (see LN p. 86 bottom), we have

$$[S^c,S^d]_t = \int_0^t S^c_u S^d_{u-} \,\mathrm{d}[W^{(\sigma,\mu)},\widetilde{N}]_u.$$

By definition of $[\bullet, \bullet]$ for semimartingales (see LN p. 89 bottom), we have

$$[W^{(\sigma,\mu)}, \widetilde{N}]_t = \sum_{0 < u \le t} \Delta W_u^{(\sigma,\mu)} \Delta N_u = 0$$

and consequently $[S^c, S^d] = 0$. Applying now the product rule to S finally yields

$$dS = S_{-}^{d} dS^{c} + S^{c} dS^{d}$$

= $S^{c}S_{-}^{d}(\sigma dW + \mu dt) + \kappa S^{c}S_{-}^{d} d\widetilde{N}$
= $S_{-}(\mu dt + \sigma dW + \kappa d\widetilde{N}).$

(b) We recall from Exercise 10-1 the definition of a Poisson process (here for finite time horizon).

A (\mathbb{P}, \mathbb{F}) -Poisson process with parameter $\lambda > 0$ is a (real-valued) stochastic process $N = (N_t)_{t \in [0,T]}$ which is \mathbb{F} -adapted, starts at 0 (i.e. $N_0 = 0 \mathbb{P}$ -a.s.) and satisfies the following two properties:

(PP1) For $0 \le t < t + h \le T$, the increment $N_{t+h} - N_t$ is independent (under \mathbb{P}) of \mathcal{F}_t and is (under \mathbb{P}) Poisson-distributed with parameter λh , i.e.

$$\mathbb{P}[N_{t+h} - N_t = k] = \frac{(\lambda h)^k}{k!} e^{-\lambda h}, \quad k \in \mathbb{N}_0.$$

(PP2) N is a counting process with jumps of size 1, i.e. for \mathbb{P} -almost all ω , the function $t \mapsto N_t(\omega)$ is right-continuous with left limits (RCLL), piecewise constant and \mathbb{N}_0 -valued, and increases by jumps of size 1.

We check the conditions separately. Since N is a (\mathbb{P}, \mathbb{F}) -Poisson process and since \mathbb{Q} is equivalent to \mathbb{P} , N fulfills (PP2) under the measure \mathbb{Q} , $N_0 = 0$ \mathbb{Q} -a.s. (trivially) and N is \mathbb{F} -adapted. It remains to check (PP1).

To that end, we fix $0 \le t < t + h \le T$ and and bounded Borel function $f : \mathbb{R} \to \mathbb{R}$. Using the (P-)independence of N and W, that $W_{t+h} - W_t$ (or rather Z_{t+h}/Z_t) and $N_{t+h} - N_t$ are (P)-independent of \mathcal{F}_t and Bayes' rule (see LN Lemma 6.2.1 2) p. 105) yields

$$\mathbb{E}_{\mathbb{Q}}\left[f(N_{t+h} - N_t) \,|\, \mathcal{F}_t\right] = \mathbb{E}\left[\frac{Z_{t+h}}{Z_t}f(N_{t+h} - N_t) \,\Big|\, \mathcal{F}_t\right] \tag{4}$$

$$= \mathbb{E}\left[\frac{Z_{t+h}}{Z_t}f(N_{t+h} - N_t)\right]$$
(5)

$$= \mathbb{E}\left[\frac{Z_{t+h}}{Z_t}\right] \mathbb{E}\left[f(N_{t+h} - N_t)\right]$$
(6)

$$= \mathbb{E}\left[f(N_{t+h} - N_t)\right],\tag{7}$$

since $\mathbb{E}[Z_{t+h}/Z_t] = \mathbb{E}[\mathbb{E}[Z_{t+h}/Z_t | \mathcal{F}_t]] = 1$. Because f was arbitrary, we conclude (by the hint) that $N_{t+h} - N_t$ and \mathcal{F}_t are \mathbb{Q} -independent. For the Poisson distribution property, we take the Borel function $f(x) := \mathbb{1}_{\{x=k\}}$ and insert it in (7):

$$\mathbb{Q}\left[N_{t+h} - N_t = k\right] = \mathbb{E}\left[f(N_{t+h} - N_t)\right] = \mathbb{P}\left[N_{t+h} - N_t = k\right] = \frac{(\lambda h)^k}{k!}e^{-\lambda h},$$

i.e., $N_{t+h} - N_t$ is Poisson distributed with parameter λh .

For the SDE part, we note that by Girsanov's theorem (see LN Theorem 6.2.3 p. 106), $W^{\mathbb{Q}}$ is a (\mathbb{Q}, \mathbb{F}) -Brownian motion and that the SDE of S under \mathbb{Q} is given by

$$\mathrm{d}S = S_{-}(\mu\,\mathrm{d}t + \sigma\,\mathrm{d}W + \kappa\,\mathrm{d}\widetilde{N}) = S_{-}(\sigma\,\mathrm{d}W^{\mathbb{Q}} + \kappa\,\mathrm{d}\widetilde{N}).$$

(c) By construction, $S = S^c S^d$, where S^c and S^d are from part a). Under \mathbb{Q} , we have (according to part a) and b))

$$S_T^c = e^{\sigma W_T^{\mathbb{Q}} - \frac{1}{2}\sigma^2 T}$$
 and $S_T^d = e^{\log(1+\kappa)N_T - \lambda\kappa T}$.

By \mathbb{P} -independence of W and N, we obtain the formula

$$\mathbb{E}_{\mathbb{Q}} \left[S_T^{\alpha} \right] = \mathbb{E}_{\mathbb{Q}} \left[(S_T^c)^{\alpha} (S_T^d)^{\alpha} \right]$$
$$= \mathbb{E} \left[Z_T (S_T^c)^{\alpha} (S_T^d)^{\alpha} \right]$$
$$= \mathbb{E} \left[Z_T (S_T^c)^{\alpha} \right] \mathbb{E} \left[(S_T^d)^{\alpha} \right]$$
$$= \mathbb{E}_{\mathbb{Q}} \left[(S_T^c)^{\alpha} \right] \mathbb{E} \left[(S_T^d)^{\alpha} \right].$$

It remains to compute the quantities $\mathbb{E}_{\mathbb{Q}}[(S_T^c)^{\alpha}]$ and $\mathbb{E}[(S_T^d)^{\alpha}]$ separately. We start with $\mathbb{E}[(S_T^d)^{\alpha}]$. The moment generating function of a Poisson random variable X with parameter λ is : $\phi_X(u) = \mathbb{E}_{\mathbb{P}}[e^{uX}] = e^{\lambda(e^u - 1)}$. We have

$$\mathbb{E}\left[(S_T^d)^{\alpha}\right] = e^{\lambda T((1+\kappa)^{\alpha}-1) - \alpha\lambda\kappa T}.$$

Since $W_T^{\mathbb{Q}} \sim \mathcal{N}(0,T)$ under \mathbb{Q} , we obtain

$$\mathbb{E}_{\mathbb{Q}}\left[(S_T^c)^{\alpha}\right] = e^{\frac{1}{2}T\alpha\sigma^2(\alpha-1)}$$

We finally obtain the formula

$$\mathbb{E}_{\mathbb{O}}\left[S_{T}^{\alpha}\right] = e^{T\left(\frac{1}{2}\alpha\sigma^{2}(\alpha-1)+\lambda\left((1+\kappa)^{\alpha}-1\right)-\alpha\kappa\lambda\right)}.$$

Exercise 14-2. Let T > 0 denote a fixed time horizon and let $W = (W_t)_{t \in [0,T]}$ be a Brownian motion on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let $\mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]}$ be the filtration generated by W and augmented by the \mathbb{P} -null sets in $\sigma(W_s; 0 \le s \le T)$. Consider the Black–Scholes model, where the undiscounted bank account price process \widetilde{S}^0 and the undiscounted stock price process \widetilde{S}^1 are given by $\widetilde{S}_t^0 = e^{rt}$ and $\widetilde{S}_t^1 = e^{\sigma W_t + (\mu - \frac{\sigma^2}{2})t}$, $0 \le t \le T$, $r, \mu \in \mathbb{R}$ and $\sigma > 0$. Denote by \mathbb{Q}^* the unique equivalent martingale measure for $S^1 := \widetilde{S}^1/\widetilde{S}^0$ on \mathcal{F}_T .

(a) Let $\widetilde{S}^2 = (\widetilde{S}_t^2)_{t\geq 0}$ be a strictly positive continuous semimartingale with respect to \mathbb{P} and \mathbb{F} , which we interpret as the undiscounted price process of another traded asset. Let $\varphi_t = (\eta_t, \vartheta_t^2), t \leq 0 < T$, be a pair of adapted processes whose paths are continuous on [0, T) for \mathbb{P} -almost all ω . Set $\widetilde{V}_t(\varphi) := \eta_t \widetilde{S}_t^0 + \vartheta_t^2 \widetilde{S}_t^2$ and suppose that $\widetilde{V}_t(\varphi) > 0$ \mathbb{P} -a.s. for all $0 \leq t < T$. Define

$$\pi_t^0 := \frac{\eta_t S_t^0}{\widetilde{V}_t(\varphi)} \quad \text{and} \quad \pi_t^2 := \frac{\vartheta_t^2 S_t^2}{\widetilde{V}_t(\varphi)}, \quad 0 \le t < T.$$

Show that φ is *self-financing*, i.e. $\widetilde{V}_t(\varphi) = \widetilde{V}_0(\varphi) + \int_0^t \eta_s \, \mathrm{d}\widetilde{S}_s^0 + \int_0^t \vartheta_s^2 \, \mathrm{d}\widetilde{S}_s^2$ for all $0 \le t < T$ P-a.s., if and only if we have P-a.s for all $0 \le t < T$

$$\pi_t^0 + \pi_t^2 = 1$$
 and $\frac{\mathrm{d}\widetilde{V}_t(\varphi)}{\widetilde{V}_t(\varphi)} = \pi_t^0 \frac{\mathrm{d}\widetilde{S}_t^0}{\widetilde{S}_t^0} + \pi_t^2 \frac{\mathrm{d}\widetilde{S}_t^2}{\widetilde{S}_t^2}$

(b) Now assume that \widetilde{S}^2 denotes the undiscounted arbitrage-free price process of a European call option on \widetilde{S}^1 with strike K = 1 and maturity T. Recall that $\widetilde{S}_t^2 > 0$ P-a.s. for all $0 \le t < T$ and satisfies P-a.s. for all $0 \le t < T$

$$\begin{split} \mathrm{d}\widetilde{S}_t^2 &= \Phi(d_1)\,\mathrm{d}\widetilde{S}_t^1 - e^{-rT}\Phi(d_2)\,\mathrm{d}\widetilde{S}_t^0,\\ \widetilde{S}_t^2 &= \Phi(d_1)\widetilde{S}_t^1 - e^{-rT}\Phi(d_2)\widetilde{S}_t^0, \end{split}$$

where $d_{1,2} = \frac{\log \tilde{S}_t^1 + (r \pm \frac{1}{2}\sigma^2)(T-t)}{\sigma\sqrt{T-t}}$ and Φ denotes the cdf (distribution function) of a standard normal random variable. Derive a formula for the self-financing strategy $\varphi_t = (\eta_t, \vartheta_t^2)$, $t \leq 0 < T$, that replicates one stock \tilde{S}^1 by trading only in \tilde{S}^0 and \tilde{S}^2 . *Hint:* Use part (a).

(c) Now assume that $\sigma = 1$. Prove that there exists a random variable X such that

$$\mathbb{E}_{\mathbb{Q}^*}[(S_t^1 - 1)^+] = \mathbb{Q}^*[X \le t], \quad 0 \le t \le T,$$

and describe the law (distribution) of X under \mathbb{Q}^* .

Solution 14-2. (a) The first equation holds by definition for all $\varphi = (\eta, \vartheta^2)$ regardless of whether the strategy is self-financing or not. Next, note that $\widetilde{V}(\varphi)$ is adapted and has continuous paths on [0, T) for \mathbb{P} -almost all ω , since the same is true for $\eta, \vartheta, \widetilde{S}^1, \widetilde{S}^2$. Since $\widetilde{V}(\varphi)$ is moreover strictly positive \mathbb{P} -a.s. for all $0 \leq t < T$, it follows that $\frac{1}{\widetilde{V}(\varphi)}$ is adapted and has continuous and strictly positive paths on [0, T) for \mathbb{P} -almost all ω , too. In conclusion, both $\widetilde{V}(\varphi)$ and $\frac{1}{\widetilde{V}(\varphi)}$ are predictable and locally bounded on [0, t] for all t < T. Hence by the associativity of the stochastic integral we have \mathbb{P} -a.s. for all $0 \leq t < T$

$$\begin{split} \mathrm{d}\widetilde{V}_{t}(\varphi) &= \eta_{t} \,\mathrm{d}\widetilde{S}_{t}^{0} + \vartheta_{t}^{2} \,\mathrm{d}\widetilde{S}_{t}^{2} \\ \Leftrightarrow & \mathrm{d}\widetilde{V}_{t}(\varphi) = \widetilde{S}_{t}^{0} \eta_{t} \,\frac{\mathrm{d}\widetilde{S}_{t}^{0}}{\widetilde{S}_{t}^{0}} + \vartheta_{t}^{2} \widetilde{S}_{t}^{2} \,\frac{\mathrm{d}\widetilde{S}_{t}^{2}}{\widetilde{S}_{t}^{2}} \\ \Leftrightarrow & \frac{\mathrm{d}\widetilde{V}_{t}(\varphi)}{\widetilde{V}_{t}(\varphi)} = \frac{\widetilde{S}_{t}^{0} \eta_{t}}{\widetilde{V}_{t}(\varphi)} \,\frac{\mathrm{d}\widetilde{S}_{t}^{0}}{\widetilde{S}_{t}^{0}} + \frac{\vartheta_{t}^{2} \widetilde{S}_{t}^{2}}{\widetilde{V}_{t}(\varphi)} \,\frac{\mathrm{d}\widetilde{S}_{t}^{2}}{\widetilde{S}_{t}^{2}} \\ \Leftrightarrow & \frac{\mathrm{d}\widetilde{V}_{t}(\varphi)}{\widetilde{V}_{t}(\varphi)} = \pi_{t}^{0} \,\frac{\mathrm{d}\widetilde{S}_{t}^{0}}{\widetilde{S}_{t}^{0}} + \pi_{t}^{2} \,\frac{\mathrm{d}\widetilde{S}_{t}^{2}}{\widetilde{S}_{t}^{2}}, \end{split}$$
(8)

which establishes the claim.

(b) Since $\widetilde{S}_t^2 > 0$ P-a.s. for all $0 \le t < T$, we have by part (a) P-a.s. for all $0 \le t < T$

$$\frac{\mathrm{d}\widetilde{S}_t^2}{\widetilde{S}_t^2} = \pi_t^0 \frac{\mathrm{d}\widetilde{S}_t^0}{\widetilde{S}_t^0} + \pi_t^1 \frac{\mathrm{d}\widetilde{S}_t^1}{\widetilde{S}_t^1},\tag{9}$$

where $\pi_t^0 = -\frac{e^{-rT}\Phi(d_2)\tilde{S}_t^0}{\tilde{S}_t^2}$ and $\pi_t^1 = \frac{\Phi(d_1)\tilde{S}_t^1}{\tilde{S}_t^2}$. Note that π^1 is adapted, strictly positive and continuous on [0, T). Hence, the same is true for $\frac{1}{\pi^1}$, which is therefore predictable and locally bounded. By associativity of the stochastic integral, we may deduce that we have \mathbb{P} -a.s. for all $0 \le t < T$

$$\frac{\mathrm{d}\tilde{S}_{t}^{1}}{\tilde{S}_{t}^{1}} = -\frac{\pi_{t}^{0}}{\pi_{t}^{1}}\frac{\mathrm{d}\tilde{S}_{t}^{0}}{\tilde{S}_{t}^{0}} + \frac{1}{\pi_{t}^{1}}\frac{\mathrm{d}\tilde{S}_{t}^{2}}{\tilde{S}_{t}^{2}}.$$
(10)

Note that $-\frac{\pi_t^0}{\pi_t^1} + \frac{1}{\pi_t^1} = \frac{\pi^1}{\pi_t^1} = 1$. Now define $\varphi = (\eta, \vartheta^2)$ by

$$\eta := \frac{\widetilde{S}_t^1\left(-\frac{\pi_t^0}{\pi_t^1}\right)}{\widetilde{S}_t^0} = e^{-rT} \frac{\Phi(d_2)}{\Phi(d_1)},\tag{11}$$

$$\vartheta^2 := \frac{\widetilde{S}_t^1 \frac{1}{\pi_t^1}}{\widetilde{S}_t^2} = \frac{1}{\Phi(d_1)}.$$
(12)

It follows by part (a) that $\varphi = (\eta, \vartheta^2)$ is the desired self-financing strategy.

(c) We know from the lecture that S is given by

$$S_t = e^{W_t^* - \frac{1}{2}t}, \quad 0 \le t \le T,$$
(13)

where $W^* = (W^*_t)_{t \ge 0}$ is a Brownian motion under \mathbb{Q}^* . Fix $t \in [0, T]$. Using that $W^*_t \sim \mathcal{N}(0, t)$ under \mathbb{Q}^* , we have

$$\begin{aligned} \mathbb{E}_{\mathbb{Q}^*}[(S_t^1 - 1)^+] &= \frac{1}{\sqrt{2\pi t}} \int_{-\infty}^{\infty} \left(e^{-t/2 + x} - 1 \right)^+ e^{-\frac{x^2}{2t}} \, \mathrm{d}x \\ &= \frac{1}{\sqrt{2\pi t}} \int_{t/2}^{\infty} \left(e^{-t/2 + x} - 1 \right) e^{-\frac{x^2}{2t}} \, \mathrm{d}x \\ &= \frac{1}{\sqrt{2\pi t}} \int_{t/2}^{\infty} e^{-\frac{(x-t)^2}{2t}} \, \mathrm{d}x - \mathbb{Q}^*[W_t^* \ge t/2] \\ &= \mathbb{Q}^*[W_t^* \ge -t/2] - \mathbb{Q}^*[W_t^* \ge t/2] \\ &= \mathbb{Q}^*[-t/2 \le W_t^* \le t/2] = \mathbb{Q}^*[(W_t^*)^2 \le t^2/4] \\ &= \mathbb{Q}^*\left[\left(\frac{2W_t^*}{\sqrt{t}} \right)^2 \le t \right] = \mathbb{Q}^*[X \le t], \end{aligned}$$
(14)

where $X = Y^2$ and $Y \sim \mathcal{N}(0, 2^2)$. Alternatively, we have X = 4Z, where $Z \sim \chi_1^2$.

Exercise 14-3. Fix a time horizon $T \in (0, \infty)$ and a probability space (Ω, \mathcal{F}, P) on which there is a Brownian motion $(W_t)_{0 \le t \le T}$. We take as filtration $\mathbb{F} = (\mathcal{F}_t)_{0 \le t \le T}$ the one generated by W and augmented by the *P*-nullsets in $\sigma(W_s; s \le T)$. Consider the Black-Scholes model where the undiscounted bank account and the undiscounted risky asset price are given by

$$\frac{d\widetilde{S}_t^0}{\widetilde{S}_t^0} = rdt,$$
$$\frac{d\widetilde{S}_t^1}{\widetilde{S}_t^1} = \mu dt + \sigma dW_t,$$

where $\mu, r \in \mathbb{R}$ and $\sigma > 0$. We assume that $\widetilde{S}_0^0 = 1$ and $\widetilde{S}_0^1 > 0$.

(a) Consider the *n*-th root of the stock option, given by

$$\widetilde{H}_n = \left(\widetilde{S}_T^1\right)^{1/n},$$

for $n \in \{1, 2, ...\}$.

- i) Compute the undiscounted arbitrage-free price $\widetilde{V}_t^{\widetilde{H}_n}$ at time t. Hint: $E[e^{tX}] = e^{\frac{1}{2}\sigma^2 t^2}$ for $X \sim N(0, \sigma^2)$.
- ii) Find the replicating strategy for \widetilde{H}_n .
- (b) Let $\tilde{H} = (\tilde{S}_T^1 1)^+$ be a *call option*, and denote by $\tilde{V}_t^{\tilde{H}}$ its undiscounted arbitrage-free price at time t. Consider the option

$$\widetilde{J} = \begin{cases} \widetilde{S}_T^1 & \text{ if } \widetilde{S}_T^1 < 1, \\ \left(\widetilde{S}_T^1\right)^2 & \text{ if } \widetilde{S}_T^1 \ge 1, \end{cases}$$

and denote $\widetilde{V}_t^{\widetilde{J}}$ its undiscounted arbitrage-free price at time t. Show that

$$\widetilde{V}_t^{\widetilde{J}} \ge e^{r(T-t)} \left(\widetilde{V}_t^{\widetilde{H}} \right)^2 + \widetilde{S}_t^1 + \widetilde{V}_t^{\widetilde{H}}.$$

Hint: Use Jensen's inequality.

Solution 14-3. (a) i) First, recall that

$$\widetilde{S}_t^1 = S_0^1 \exp^{\sigma W_t + (\mu - \frac{1}{2}\sigma^2)t},$$

and that

$$W_t^* = W_t + \frac{\mu - r}{\sigma}t$$

is a Brownian motion under the unique EMM. This will be used in the risk-neutral pricing formula:

$$\begin{split} \widetilde{V}_{t}^{\widetilde{H}_{n}} &= e^{-r(T-t)} \mathbb{E}_{Q} \Big[\left(\widetilde{S}_{T}^{1} \right)^{1/n} |\mathcal{F}_{t} \Big] = e^{-r(T-t)} (\widetilde{S}_{t}^{1})^{\frac{1}{n}} \mathbb{E}_{Q} \Big[\left(\frac{\widetilde{S}_{T}^{1}}{\widetilde{S}_{t}^{1}} \right)^{1/n} |\mathcal{F}_{t} \Big] \\ &= e^{-r(T-t)} \left(\widetilde{S}_{t}^{1} \right)^{1/n} \mathbb{E}_{Q} \Big[\exp \left(\frac{\sigma}{n} (W_{T} - W_{t}) + \frac{1}{n} (\mu - \frac{\sigma^{2}}{2}) (T - t) \right) |\mathcal{F}_{t} \Big] \\ &= e^{-r(T-t)} \left(\widetilde{S}_{t}^{1} \right)^{1/n} \mathbb{E}_{Q} \Big[\exp \left(\frac{\sigma}{n} (W_{T}^{*} - W_{t}^{*}) - \frac{\mu - r}{n} (T - t) + \frac{1}{n} (\mu - \frac{\sigma^{2}}{2}) (T - t) \right) |\mathcal{F}_{t} \Big] \\ &= e^{-r(T-t)} \left(\widetilde{S}_{t}^{1} \right)^{1/n} \mathbb{E}_{Q} \Big[\exp \left(\frac{\sigma}{n} (W_{T}^{*} - W_{t}^{*}) + \frac{1}{n} (r - \frac{\sigma^{2}}{2}) (T - t) \right) |\mathcal{F}_{t} \Big] \\ &= e^{-r(T-t) + \frac{1}{n} (r - \frac{\sigma^{2}}{2}) (T - t)} \left(\widetilde{S}_{t}^{1} \right)^{1/n} \mathbb{E}_{Q} \Big[\exp \left(\frac{\sigma}{n} (W_{T}^{*} - W_{t}^{*}) + \frac{1}{n} (r - W_{t}^{*}) \right) |\mathcal{F}_{t} \Big] \\ &= e^{-r(T-t) + \frac{1}{n} (r - \frac{\sigma^{2}}{2}) (T - t)} e^{\frac{\sigma^{2}}{2n^{2}} (T - t)} \left(\widetilde{S}_{t}^{1} \right)^{1/n}, \end{split}$$

where in the last step we used the hint.

ii) We have,

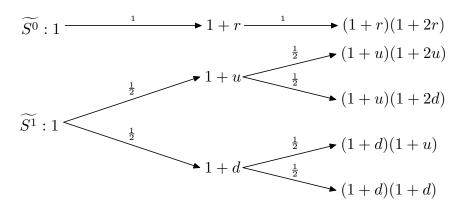
$$\begin{aligned} \theta_t^{\widetilde{H}_n} &= \ \frac{\partial \widetilde{V}_t^{\widetilde{H}_n}}{\partial \widetilde{S}_t^1} = e^{-r(T-t) + \frac{1}{n}(r - \frac{\sigma^2}{2})(T-t)} e^{\frac{\sigma^2}{2n^2}(T-t)} \frac{1}{n} \Big(\widetilde{S}_t^1\Big)^{1/n-1}; \\ \eta_t^{\widetilde{H}_n} &= \ e^{-rt} \widetilde{V}_t^{\widetilde{H}_n} - e^{-rt} \theta_t^{\widetilde{H}_n} \widetilde{S}_t^1 = e^{-rT + \frac{1}{n}(r - \frac{\sigma^2}{2})(T-t)} e^{\frac{\sigma^2}{2n^2}(T-t)} \Big(1 - \frac{1}{n}\Big) \Big(\widetilde{S}_t^1\Big)^{1/n}. \end{aligned}$$

(b) Just plugging in T and comparing both sides of the equation for the cases $\widetilde{S}_T^1 < 1$ and $\widetilde{S}_T^1 \ge 1$ gives that $\widetilde{J} = (\widetilde{H})^2 + \widetilde{S}_T^1 + \widetilde{H}$. Then

$$\begin{split} \widetilde{V}_t^{\widetilde{J}} &= e^{-r(T-t)} \mathbb{E}_Q[\widetilde{J}|\mathcal{F}_t] \\ &= e^{-r(T-t)} \mathbb{E}_Q[(\widetilde{H})^2 + \widetilde{S}_T^1 + \widetilde{H}|\mathcal{F}_t] \\ &\geq e^{-r(T-t)} \left(\mathbb{E}_Q[\widetilde{H}|\mathcal{F}_t] \right)^2 + \widetilde{S}_t^1 + \widetilde{V}_t^{\widetilde{H}} \\ &= e^{r(T-t)} \left(\widetilde{V}_t^{\widetilde{H}} \right)^2 + \widetilde{S}_T^1 + \widetilde{V}_t^{\widetilde{H}} \end{split}$$

by Jensen's inequality.

Exercise 14-4. Consider a financial market $(\tilde{S}^0, \tilde{S}^1)$ consisting of a bank account and one stock. The movements of the bank account \tilde{S}^0 and the stock price \tilde{S}^1 are described by the following trees, where the numbers beside the branches denote transition probabilities and where u > d and d, r > -0.5.



Note that the interest rate is 2r in the second period.

More precisely, let $(\Omega, \mathcal{F}, \mathbb{P})$ be the probability space with $\Omega := \{-1, 1\}^2$, $\mathcal{F} := 2^{\Omega}$ and the probability measure \mathbb{P} defined by $\mathbb{P}[\{(x_1, x_2)\}] := p_{x_1} p_{x_1, x_2}$, where

$$p_1 = p_{-1} := \frac{1}{2}$$
 and $p_{1,1} = p_{1,-1} = p_{-1,1} = p_{-1,-1} := \frac{1}{2}$

Next, consider Y_1 and Y_2 given by

$$\begin{split} Y_1((1,1)) &:= Y_1((1,-1)) := 1+u, \\ Y_2((1,1)) &:= 1+2u, \\ Y_2((1,-1)) &:= 1+2d, \end{split} \qquad \begin{aligned} Y_1((-1,1)) &:= Y_1((-1,-1)) := 1+d, \\ Y_2((-1,-1)) &:= 1+d. \end{aligned}$$

The bank account process \widetilde{S}^0 and the stock price process \widetilde{S}^1 are then given by $\widetilde{S}_k^0 = \prod_{j=1}^k (1+jr)$ and $\widetilde{S}_k^1 = \prod_{j=1}^k Y_j$ for k = 0, 1, 2, respectively. Finally, the filtration $\mathbb{F} = (\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2)$ is defined by $\mathcal{F}_0 := \{\emptyset, \Omega\}, \mathcal{F}_1 := \sigma(Y_1)$ and $\mathcal{F}_2 := \sigma(Y_1, Y_2) = 2^{\Omega} = \mathcal{F}$.

- (a) Prove in detail that the market $(\tilde{S}^0, \tilde{S}^1)$ is free of arbitrage if and only if both d < r < u and d < 2r < u are satisfied.
- (b) Suppose that u = 0.02, r = 0.01 and d = -0.01. Give an example of a self-financing strategy $\varphi \cong (0, \vartheta)$ satisfying $\mathbb{P}[V_2(\varphi) \ge 1000] = 0.25$ and $V_2(\varphi) \ge 0$ P-a.s.
- (c) Suppose again that u = 0.02, r = 0.01 and d = -0.01. Does there exist a self-financing strategy $\varphi \cong (0, \vartheta)$ satisfying $V_2(\varphi) \ge 1000$ P-a.s.? Justify your answer by either providing a concrete example of such a strategy or by formally arguing that such a strategy does not exist.
- Solution 14-4. (a) By the fundamental theorem of asset pricing in discrete time (Theorem 2.2.1 in the lecture notes), the market $(\tilde{S}^0, \tilde{S}^1)$ is arbitrage-free if and only if there exists an equivalent martingale measure (EMM) \mathbb{Q} for the discounted stock price process S^1 .

Any probability measure \mathbb{Q} equivalent to \mathbb{P} on \mathcal{F}_2 can be described by

$$\mathbb{Q}[\{(x_1, x_2)\}] := q_{x_1} q_{x_1, x_2},$$

where $q_{x_1}, q_{x_1,x_2} \in (0,1)$ satisfying $\sum_{x_1 \in \{-1,1\}} q_{x_1} = 1$ and $\sum_{x_2 \in \{-1,1\}} q_{x_1,x_2} = 1$ for all $x_1 \in \{-1,1\}$. Next, since \mathcal{F}_0 is trivial, $\mathcal{F}_1 = \sigma(Y_1)$ and Y_1 only takes two values, S^1 is a \mathbb{Q} -martingale if and only if $q_1, q_{1,1}, q_{-1,1} \in (0,1)$ and

$$\mathbb{E}_{\mathbb{Q}}\left[\frac{Y_1}{1+r}\right] = 1 \quad \text{and} \quad \mathbb{E}_{\mathbb{Q}}\left[\frac{Y_2}{1+2r} \middle| Y_1 = (1+u)\right] = 1$$

and
$$\mathbb{E}_{\mathbb{Q}}\left[\frac{Y_2}{1+2r} \middle| Y_1 = (1+d)\right] = 1.$$
 (15)

This is equivalent to $q_1, q_{1,1}, q_{-1,1} \in (0, 1)$ and

$$q_{1} \times (1+u) + (1-q_{1}) \times (1+d) = 1+r \qquad \Longleftrightarrow \qquad q_{1} = \frac{r-d}{u-d},$$

$$q_{1,1} \times (1+2u) + (1-q_{1,1}) \times (1+2d) = 1+2r \qquad \Longleftrightarrow \qquad q_{1,1} = \frac{2r-2d}{2u-2d},$$

$$q_{-1,1} \times (1+u) + (1-q_{-1,1}) \times (1+d) = 1+2r \qquad \Longleftrightarrow \qquad q_{-1,1} = \frac{2r-d}{u-d}.$$
(16)

In conclusion, the market $(\widetilde{S}^0, \widetilde{S}^1)$ is arbitrage-free if and only if

$$\frac{r-d}{u-d} \in (0,1) \quad \text{and} \quad \frac{2r-d}{u-d} \in (0,1) \quad \iff \quad d < r < u \quad \text{and} \quad d < 2r < u.$$
(17)

(b) Note that we have u = 2r, so the market is not free of arbitrage by part (a). The idea is to short the stock in the case of an "down-movement in the first period. To this end, consider the strategy $\varphi = (0, \vartheta)$, where

$$\vartheta_1^1 := 0, \quad \vartheta_2^1((1,1)) := \theta_2^1((1,-1)) := 0, \quad \vartheta_2^1((-1,1)) := \vartheta_2^1((-1,-1)) := -c, \tag{18}$$

where c > 0 is to be determined. Then ϑ is predictable and we have

$$V_{2}(\varphi)((1,1)) = 0 + 0 \times \Delta S_{1}^{1}((1,1)) + 0 \times \Delta S_{2}^{1}((1,1)) = 0,$$

$$V_{2}(\varphi)((1,-1)) = 0 + 0 \times \Delta S_{1}^{1}((1,-1)) + 0 \times \Delta S_{2}^{1}((1,-1)) = 0,$$

$$V_{2}(\varphi)((-1,1)) = 0 + 0 \times \Delta S_{1}^{1}((-1,1)) - c \times \Delta S_{2}^{1}((-1,1))$$

$$= -c \times \left(\frac{(1+d)(1+2r)}{(1+r)(1+2r)} - \frac{1+d}{1+r}\right) = -c \times 0 = 0,$$

$$V_{2}(\varphi)((-1,-1)) = 0 + 0 \times \Delta S_{1}^{1}((-1,-1)) - c \times \Delta S_{2}^{1}((-1,-1))$$

$$= -c \times \left(\frac{(1+d)(1+d)}{(1+r)(1+2r)} - \frac{1+d}{1+r}\right)$$

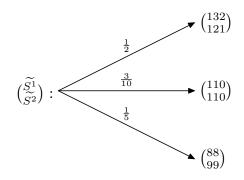
$$= -c \times \left(\frac{(1+d)(1+d)}{(1+r)(1+2r)} - \frac{1+d}{1+r}\right)$$

$$= -c \times \left(\frac{1+d}{1+r} \times \frac{d-2r}{1+2r}\right) = c \times \frac{0.99 \times 0.03}{1.01 \times 1.02}.$$
(19)

Choosing c large enough, i.e. $c \ge 1000 \times \frac{1.01 \times 1.02}{0.99 \times 0.03} = 34686.86$ gives the desired strategy as $\mathbb{P}[\{(-1, 1)\}] = 1/2 \times 1/2 = 0.25$.

(c) Such a strategy does **not** exist. Seeking a contradiction, suppose that there exists a strategy $\varphi \triangleq (0, \vartheta)$ such that $V_2(\varphi) \ge 1000 \mathbb{P}$ -a.s. Then in particular we have $V_2(\varphi)((-1,1)) \ge 1000$. Since $\Delta S_2^1((-1,1)) = 0$ (see above), it follows that $V_1(\varphi)((-1,1)) \ge 1000$. But given that d < r < u, the market $(\tilde{S}^0, \tilde{S}^1)$ is free of arbitrage in the first-period and since $V_0(\varphi) = 0$, we necessarily have $V_1(\varphi)((1,1)) = V_1(\varphi)((1,-1)) < 0$. Again since d < r < u, after an up-movement in the first period the market $(\tilde{S}^0, \tilde{S}^1)$ is free of arbitrage in the second period. Thus we cannot have $V_1(\varphi)((1,1)) = V_1(\varphi)((1,-1)) < 0$ and $V_2(\varphi)((1,1)) \ge 1000 > 0$ and $V_2(\varphi)((1,-1)) \ge 1000 > 0$. Thus, we arrive at a contradiction.

Exercise 14-5. Consider a one-period financial market $(\tilde{S}^0, \tilde{S}^1, \tilde{S}^2)$ consisting of a bank account \tilde{S}^0 with interest rate r := 0.1 and two stocks \tilde{S}^1, \tilde{S}^2 . The movements of \tilde{S}^1 and \tilde{S}^2 are given by the following trees, where the numbers beside the branches denote transition probabilities.



More precisely, let $(\Omega, \mathcal{F}, \mathbb{P})$ be the probability space with $\Omega := \{1, 0, -1\}, \mathcal{F} := 2^{\Omega}$ and the probability measure \mathbb{P} defined by $\mathbb{P}[\{1\}] := 0.5, \mathbb{P}[\{0\}] := 0.3$ and $\mathbb{P}[\{-1\}] := 0.2$. Next, consider Y_1^1 and Y_2^1 given by

$$\begin{array}{ll} Y_1^1(1) = 1.32, & Y_1^1(0) := 1.1, & Y_1^1(-1) := 0.88, \\ Y_1^2(1) = 1.21, & Y_1^2(0) := 1.1, & Y_1^2(-1) := 0.99, \end{array}$$

The movements of the bank account \widetilde{S}^0 and the two stocks \widetilde{S}^1 and \widetilde{S}^2 are then given by

 $\widetilde{S}^0_0 := 1, \quad \widetilde{S}^1_0 := \widetilde{S}^2_0 := 100, \quad \widetilde{S}^0_1 := 1.1, \quad \widetilde{S}^1_1 := 100 Y^1_1, \quad \widetilde{S}^2_1 := 100 Y^2_1.$

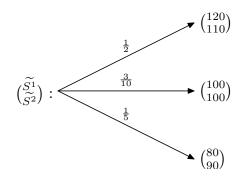
Finally, the filtration $\mathbb{F} = (\mathcal{F}_0, \mathcal{F}_1)$ is defined by $\mathcal{F}_0 := \{\emptyset, \Omega\}$ and $\mathcal{F}_1 := 2^{\Omega} = \mathcal{F}$.

- (a) Show that the market $(\widetilde{S}^0, \widetilde{S}^1, \widetilde{S}^2)$ is free of arbitrage and incomplete.
- (b) The undiscounted payoff of an exchange option is given by

$$\widetilde{H}^{EX} := \left(\widetilde{S}_1^1 - \widetilde{S}_1^2\right)^+ := \max\left(0, \widetilde{S}_1^1 - \widetilde{S}_1^2\right).$$

Compute the set of all arbitrage-free prices for \widetilde{H}^{EX} . Does there exist an admissible self-financing strategy $\varphi = (3, \vartheta)$ such that $V_1(\varphi) = \frac{\widetilde{H}^{EX}}{1+r} \mathbb{P}$ -a.s.?

- (c) Compute an admissible self-financing strategy $\varphi = (5, \vartheta)$, which superreplicates \widetilde{H}^{EX} , i.e. satisfies $V_1(\varphi) \geq \frac{\widetilde{H}^{EX}}{1+r} \mathbb{P}$ -a.s.
- **Solution 14-5.** (a) By the fundamental theorem of asset pricing in discrete time (Theorem 2.2.1 in the lecture notes), showing that the market is arbitrage-free is equivalent to showing that there exists an equivalent martingale measure (EMM) Q for the discounted stock prices $S = (S^1, S^2)$. Note that the movements of the discounted stock price processes S^1 and S^2 are given by the following trees, where the numbers beside the branches denote transition probabilities.



Observe that $S^2 = \frac{1}{2}S^1 + 50$. Hence $S = (S^1, S^2)$ is a Q-martingale if and only if S^1 is a Q-martingale. Next, any probability measure Q equivalent to P on \mathcal{F}_1 can be described by a probability vector (q_1, q_0, q_{-1}) , where $q_1 := \mathbb{Q}[\{1\}], q_0 := \mathbb{Q}[\{0\}], q_{-1} := \mathbb{Q}[\{-1\}]$ and $0 < q_1, q_0, q_{-1} < 1$. Then S^1 and hence S is a Q-martingale if and only if

$$\mathbb{E}_{\mathbb{Q}}[S_1^1] = S_0^1, \\ 0 < q_1, q_0, q_{-1} < 1.$$
(20)

This is equivalent to

$$120 \times q_1 + 100 \times q_0 + 80 \times q_{-1} = 100,$$

$$q_1 + q_0 + q_{-1} = 1,$$

$$0 < q_1, q_0, q_{-1} < 1,$$
(21)

which is equivalent to

$$20 \times q_1 - 20q_{-1} = 0,$$

$$q_1 + q_0 + q_{-1} = 1,$$

$$0 < q_1, q_0, q_{-1} < 1,$$
(22)

which is in turn equivalent to

$$q_{1} = q_{-1}$$

$$q_{0} = 1 - 2q_{1},$$

$$0 < q_{1}, q_{0}, q_{-1} < 1.$$
(23)

Thus, the set $\mathbb{P}_e(S)$ of all equivalent martingale measures for S can be described by

$$\mathbb{P}_e(S) = \{ (\lambda, 1 - 2\lambda, \lambda) \mid \lambda \in (0, 0.5) \}.$$
(24)

Since $\mathbb{P}_e(S)$ is nonempty and consist of more than one element, the market $(\tilde{S}^0, \tilde{S}^1, \tilde{S}^2)$ is arbitrage-free and incomplete.

(b) Denote by \mathbb{Q}_{λ} the EMM corresponding to the probability vector $(\lambda, 1 - 2\lambda, \lambda)$. Then the set $\mathcal{P}_{\widetilde{H}^{EX}}$ of all arbitrage-free prices for \widetilde{H}^{EX} is given by

$$\mathcal{P}_{\widetilde{H}^{EX}} = \left\{ \mathbb{E}_{\mathbb{Q}_{\lambda}} \left[\frac{\widetilde{H}^{EX}}{1+r} \right] \middle| \lambda \in (0, 0.5) \right\}$$
$$= \left\{ \lambda \times 10 + (1-2\lambda) \times 0 + \lambda \times 0 \middle| \lambda \in (0, 0.5) \right\}$$
$$= (0, 5) . \tag{25}$$

The set $\mathcal{P}_{\widetilde{H}^{EX}}$ is an nonempty open interval. In particular, the mapping $\mathbb{P}_e(S) \to \mathbb{R}$, $\mathbb{Q} \mapsto \mathbb{E}_{\mathbb{Q}}[\frac{\widetilde{H}^{EX}}{1+r}]$ is not constant. By the characterisation of attainable payoffs (Theorem 3.1.2 in the lecture notes) it follows immediately that \widetilde{H}^{EX} is not attainable. Hence, there does not exist an admissible self-financing strategy $\varphi = (3, \vartheta)$ with $V_1(\varphi) = \frac{\tilde{H}^{EX}}{1+r}$ P-a.s.

(c) Using that $S^2 = \frac{1}{2}S^1 + 50$, we may assume without loss of generality that $\vartheta^2 \equiv 0$, i.e. we only use the bank account and the first stock for hedging. Hence consider a self-financing strategy $\varphi = (5, \vartheta)$, with $\vartheta_1^1 = c$ and $\vartheta_1^2 = 0$, where $c \in \mathbb{R}$ is to be determined. Then φ is a superreplication strategy for \widetilde{H}^{EX} if and only if

$$5 + c \times \Delta S_1^1(1) \ge \frac{\widetilde{H}^{EX}(1)}{1+r} \qquad \Longleftrightarrow \qquad 5 + c \times 20 \ge 10 \qquad \Longleftrightarrow \qquad c \ge 1/4,$$

$$5 + c \times \Delta S_1^1(0) \ge \frac{\widetilde{H}^{EX}(0)}{1+r} \qquad \Longleftrightarrow \qquad 5 + c \times 0 \ge 0 \qquad \Longleftrightarrow \qquad c \in \mathbb{R},$$

$$+ c \times \Delta S_1^1(-1) \ge \frac{\widetilde{H}^{EX}(-1)}{1+r} \qquad \Longleftrightarrow \qquad 5 - c \times 20 \ge 0 \qquad \Longleftrightarrow \qquad c \le 1/4.$$
(26)

$$5 + c \times \Delta S_1^1(-1) \ge \frac{H^{LX}(-1)}{1+r} \quad \iff \quad 5 - c \times 20 \ge 0 \quad \iff \quad c \le 1/4.$$
 (26)

Choosing c = 1/4 gives the desired superreplication strategy.