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Exercise Sheet 14 (with Solutions)

Exercise 14-1. Let T > 0 be a fixed time horizon and (Ω,F ,P) a complete probability space
with filtration F = (Ft)t∈[0,T ] satisfying the usual assumptions. Let W = (Wt)t∈[0,T ] be a (P,F)-
Brownian motion andN = (Nt)t∈[0,T ] an independent (P,F)-Poisson process with parameter λ > 0.
Consider a discounted stock price S = (St)t∈[0,T ] defined by

St := exp

(
σWt + log(1 + κ)Nt +

(
µ− 1

2
σ2 − κλ

)
t

)
,

where µ ∈ R, κ > −1, and σ > 0.

(a) Use Itô’s formula to show that

dSt = St−

(
µdt+ σ dWt + κdÑt

)
, S0 = 1,

where Ñt := Nt − λt is the compensated Poisson process.

Hint. Define Sct := eσWt+(µ−1/2σ2)t and Sdt := elog(1+κ)Nt−κλt so that S = ScSd.

(b) Define the strictly positive (P,F)-martingale Z := E(−µ/σW ) and the equivalent probability
measure Q via dQ/ dP := ZT .

Argue in detail that N is a (Q,F)-Poisson process with same parameter λ. Conclude that S
is a local (Q,F)-martingale with dynamics

dSt = St−

(
σ dWQ

t + κdÑt

)
,

where (WQ
t )t∈[0,T ], W

Q
t := Wt + µ/σ t, is a (Q,F)-Brownian motion.

Hint. Recall the definition of a Poisson process relative to (P,F) and check the conditions
separately. You may use the following fact:

A random variable X and a σ-field G are independent if and only if E [f(X) |G] = E [f(X)]
for all bounded Borel functions f : R→ R.

(c) Let α ∈ R. Compute EQ [(ST )α].
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Solution 14-1. (a) Define (as given in the hint) the two auxiliary processes

Sct := exp

(
σWt +

(
µ− 1

2
σ2

)
t

)
and Sdt := exp (log(1 + κ)Nt − κλt) . (1)

The process Sc is a geometric Brownian motion. By writing W
(σ,µ)
t := σWt + µt, we have

that Sc = E(W (σ,µ)) and hence by Itô’s formula:

dSc = Sc dW (σ,µ) = Sc(σ dW + µdt). (2)

We notice that if f : R→ R is in C2, α, β ∈ R and the semimartingale X = (Xt)t≥0 is given
by Xt = αt+ βNt, then formula (6.1.7) in the lecture notes simplifies to

f(Xt) = f(0) + α

∫ t

0

f ′(Xs−) ds+
∑

0<s≤t

(
f(Xs)− f(Xs−)

)
.

Indeed, using the formula at the bottom of page 89 in the lecture notes and the fact that
the quadratic variation process of the compensated Poisson process Ñ is N , we get: [X]t =∑

0<s≤t β
2 (∆Ns)

2
=
∑

0<s≤t(∆Xt)
2.

We obtain:

Sdt = 1− κλ
∫ t

0

Sdu− du+
∑

0<u≤t

(
Sdu − Sdu−

)

= 1− κλ
∫ t

0

Sdu− du+ κ
∑

0<u≤t

Sdu−∆Nu

= 1− κλ
∫ t

0

Sdu− du+ κ

∫ t

0

Sdu− dNu

= 1 + κ

∫ t

0

Sdu− dÑu.

One can also write in differential notation

dSd = κSd− dÑ . (3)

The next step is to apply the product rule to S = ScSd. To that end, we need to have a
formula for [Sc, Sd]. By the formula for quadratic variations (see LN p. 86 bottom), we have

[Sc, Sd]t =

∫ t

0

ScuS
d
u− d[W (σ,µ), Ñ ]u.

By definition of [·,·] for semimartingales (see LN p. 89 bottom), we have

[W (σ,µ), Ñ ]t =
∑

0<u≤t

∆W (σ,µ)
u ∆Nu = 0

and consequently [Sc, Sd] = 0. Applying now the product rule to S finally yields

dS = Sd− dSc + Sc dSd

= ScSd−(σ dW + µdt) + κScSd− dÑ

= S−

(
µdt+ σ dW + κdÑ

)
.
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(b) We recall from Exercise 10-1 the definition of a Poisson process (here for finite time horizon).

A (P,F)-Poisson process with parameter λ > 0 is a (real-valued) stochastic process N =
(Nt)t∈[0,T ] which is F-adapted, starts at 0 (i.e. N0 = 0 P-a.s.) and satisfies the following two
properties:

(PP1) For 0 ≤ t < t+ h ≤ T , the increment Nt+h −Nt is independent (under P) of Ft and
is (under P) Poisson-distributed with parameter λh, i.e.

P[Nt+h −Nt = k] =
(λh)k

k!
e−λh, k ∈ N0.

(PP2) N is a counting process with jumps of size 1, i.e. for P-almost all ω, the function
t 7→ Nt(ω) is right-continuous with left limits (RCLL), piecewise constant and N0-
valued, and increases by jumps of size 1.

We check the conditions separately. Since N is a (P,F)-Poisson process and since Q is
equivalent to P, N fulfills (PP2) under the measure Q, N0 = 0 Q-a.s. (trivially) and N is
F-adapted. It remains to check (PP1).

To that end, we fix 0 ≤ t < t + h ≤ T and and bounded Borel function f : R → R. Using
the (P-)independence of N and W , that Wt+h −Wt (or rather Zt+h/Zt) and Nt+h −Nt are
(P)-independent of Ft and Bayes’ rule (see LN Lemma 6.2.1 2) p. 105) yields

EQ [f(Nt+h −Nt) |Ft] = E
[
Zt+h
Zt

f(Nt+h −Nt)
∣∣∣∣Ft] (4)

= E
[
Zt+h
Zt

f(Nt+h −Nt)
]

(5)

= E
[
Zt+h
Zt

]
E [f(Nt+h −Nt)] (6)

= E [f(Nt+h −Nt)] , (7)

since E [Zt+h/Zt] = E [E [Zt+h/Zt |Ft]] = 1. Because f was arbitrary, we conclude (by the
hint) that Nt+h −Nt and Ft are Q-independent. For the Poisson distribution property, we
take the Borel function f(x) := 1{x=k} and insert it in (7):

Q [Nt+h −Nt = k] = E [f(Nt+h −Nt)] = P [Nt+h −Nt = k] =
(λh)k

k!
e−λh,

i.e., Nt+h −Nt is Poisson distributed with parameter λh.

For the SDE part, we note that by Girsanov’s theorem (see LN Theorem 6.2.3 p. 106), WQ

is a (Q,F)-Brownian motion and that the SDE of S under Q is given by

dS = S−(µdt+ σ dW + κdÑ) = S−(σ dWQ + κdÑ).

(c) By construction, S = ScSd, where Sc and Sd are from part a). Under Q, we have (according
to part a) and b))

ScT = eσW
Q
T−

1
2σ

2T and SdT = elog(1+κ)NT−λκT .

Please see next page!
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By P-independence of W and N , we obtain the formula

EQ [SαT ] = EQ
[
(ScT )α(SdT )α

]
= E

[
ZT (ScT )α(SdT )α

]
= E [ZT (ScT )α]E

[
(SdT )α

]
= EQ [(ScT )α]E

[
(SdT )α

]
.

It remains to compute the quantities EQ [(ScT )α] and E
[
(SdT )α

]
separately. We start with

E
[
(SdT )α

]
. The moment generating function of a Poisson random variable X with parameter

λ is : φX (u) = EP
[
euX

]
= eλ(eu−1). We have

E
[
(SdT )α

]
= eλT ((1+κ)α−1)−αλκT .

Since WQ
T ∼ N (0, T ) under Q, we obtain

EQ [(ScT )α] = e
1
2Tασ

2(α−1).

We finally obtain the formula

EQ [SαT ] = eT( 1
2ασ

2(α−1)+λ((1+κ)α−1)−ακλ).

Exercise 14-2. Let T > 0 denote a fixed time horizon and let W = (Wt)t∈[0,T ] be a Brownian
motion on some probability space (Ω,F ,P). Let F = (Ft)t∈[0,T ] be the filtration generated by W
and augmented by the P-null sets in σ(Ws; 0 ≤ s ≤ T ). Consider the Black–Scholes model, where

the undiscounted bank account price process S̃0 and the undiscounted stock price process S̃1 are

given by S̃0
t = ert and S̃1

t = eσWt+(µ−σ22 )t, 0 ≤ t ≤ T , r, µ ∈ R and σ > 0. Denote by Q∗ the

unique equivalent martingale measure for S1 := S̃1/S̃0 on FT .

(a) Let S̃2 = (S̃2
t )t≥0 be a strictly positive continuous semimartingale with respect to P and

F, which we interpret as the undiscounted price process of another traded asset. Let ϕt =
(ηt, ϑ

2
t ), t ≤ 0 < T , be a pair of adapted processes whose paths are continuous on [0, T )

for P-almost all ω. Set Ṽt(ϕ) := ηtS̃
0
t + ϑ2

t S̃
2
t and suppose that Ṽt(ϕ) > 0 P-a.s. for all

0 ≤ t < T . Define

π0
t :=

ηtS̃
0
t

Ṽt(ϕ)
and π2

t :=
ϑ2
t S̃

2
t

Ṽt(ϕ)
, 0 ≤ t < T.

Show that ϕ is self-financing, i.e. Ṽt(ϕ) = Ṽ0(ϕ) +
∫ t

0
ηs dS̃0

s +
∫ t

0
ϑ2
s dS̃2

s for all 0 ≤ t < T
P-a.s., if and only if we have P-a.s for all 0 ≤ t < T

π0
t + π2

t = 1 and
dṼt(ϕ)

Ṽt(ϕ)
= π0

t

dS̃0
t

S̃0
t

+ π2
t

dS̃2
t

S̃2
t

.

(b) Now assume that S̃2 denotes the undiscounted arbitrage-free price process of a European call

option on S̃1 with strike K = 1 and maturity T . Recall that S̃2
t > 0 P-a.s. for all 0 ≤ t < T

and satisfies P-a.s. for all 0 ≤ t < T

dS̃2
t = Φ(d1) dS̃1

t − e−rTΦ(d2) dS̃0
t ,

S̃2
t = Φ(d1)S̃1

t − e−rTΦ(d2)S̃0
t ,

Please see next sheet!
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where d1,2 =
log S̃1

t+(r± 1
2σ

2)(T−t)
σ
√
T−t and Φ denotes the cdf (distribution function) of a standard

normal random variable. Derive a formula for the self-financing strategy ϕt = (ηt, ϑ
2
t ),

t ≤ 0 < T , that replicates one stock S̃1 by trading only in S̃0 and S̃2.

Hint: Use part (a).

(c) Now assume that σ = 1. Prove that there exists a random variable X such that

EQ∗ [(S1
t − 1)+] = Q∗[X ≤ t], 0 ≤ t ≤ T,

and describe the law (distribution) of X under Q∗.

Solution 14-2. (a) The first equation holds by definition for all ϕ = (η, ϑ2) regardless of

whether the strategy is self-financing or not. Next, note that Ṽ (ϕ) is adapted and has

continuous paths on [0, T ) for P-almost all ω, since the same is true for η, ϑ, S̃1, S̃2. Since

Ṽ (ϕ) is moreover strictly positive P-a.s. for all 0 ≤ t < T , it follows that 1

Ṽ (ϕ)
is adapted and

has continuous and strictly positive paths on [0, T ) for P-almost all ω, too. In conclusion,

both Ṽ (ϕ) and 1

Ṽ (ϕ)
are predictable and locally bounded on [0, t] for all t < T . Hence by the

associativity of the stochastic integral we have P-a.s. for all 0 ≤ t < T

dṼt(ϕ) = ηt dS̃0
t + ϑ2

t dS̃2
t

⇔ dṼt(ϕ) = S̃0
t ηt

dS̃0
t

S̃0
t

+ ϑ2
t S̃

2
t

dS̃2
t

S̃2
t

⇔ dṼt(ϕ)

Ṽt(ϕ)
=

S̃0
t ηt

Ṽt(ϕ)

dS̃0
t

S̃0
t

+
ϑ2
t S̃

2
t

Ṽt(ϕ)

dS̃2
t

S̃2
t

⇔ dṼt(ϕ)

Ṽt(ϕ)
= π0

t

dS̃0
t

S̃0
t

+ π2
t

dS̃2
t

S̃2
t

, (8)

which establishes the claim.

(b) Since S̃2
t > 0 P-a.s. for all 0 ≤ t < T , we have by part (a) P-a.s. for all 0 ≤ t < T

dS̃2
t

S̃2
t

= π0
t

dS̃0
t

S̃0
t

+ π1
t

dS̃1
t

S̃1
t

, (9)

where π0
t = − e

−rTΦ(d2)S̃0
t

S̃2
t

and π1
t =

Φ(d1)S̃1
t

S̃2
t

. Note that π1 is adapted, strictly positive and

continuous on [0, T ). Hence, the same is true for 1
π1 , which is therefore predictable and locally

bounded. By associativity of the stochastic integral, we may deduce that we have P-a.s. for
all 0 ≤ t < T

dS̃1
t

S̃1
t

= −π
0
t

π1
t

dS̃0
t

S̃0
t

+
1

π1
t

dS̃2
t

S̃2
t

. (10)

Note that −π
0
t

π1
t

+ 1
π1
t

= π1

π1
t

= 1. Now define ϕ = (η, ϑ2) by

η :=
S̃1
t

(
−π

0
t

π1
t

)
S̃0
t

= e−rT
Φ(d2)

Φ(d1)
, (11)

ϑ2 :=
S̃1
t

1
π1
t

S̃2
t

=
1

Φ(d1)
. (12)

It follows by part (a) that ϕ = (η, ϑ2) is the desired self-financing strategy.
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(c) We know from the lecture that S is given by

St = eW
∗
t − 1

2 t, 0 ≤ t ≤ T, (13)

where W ∗ = (W ∗t )t≥0 is a Brownian motion under Q∗. Fix t ∈ [0, T ]. Using that W ∗t ∼
N (0, t) under Q∗, we have

EQ∗ [(S1
t − 1)+] =

1√
2πt

∫ ∞
−∞

(
e−t/2+x − 1

)+

e−
x2

2t dx

=
1√
2πt

∫ ∞
t/2

(
e−t/2+x − 1

)
e−

x2

2t dx

=
1√
2πt

∫ ∞
t/2

e−
(x−t)2

2t dx−Q∗[W ∗t ≥ t/2]

= Q∗[W ∗t ≥ −t/2]−Q∗[W ∗t ≥ t/2]

= Q∗[−t/2 ≤W ∗t ≤ t/2] = Q∗[(W ∗t )2 ≤ t2/4]

= Q∗

[(
2W ∗t√
t

)2

≤ t

]
= Q∗[X ≤ t], (14)

where X = Y 2 and Y ∼ N (0, 22). Alternatively, we have X = 4Z, where Z ∼ χ2
1.

Exercise 14-3. Fix a time horizon T ∈ (0,∞) and a probability space (Ω,F , P ) on which there
is a Brownian motion (Wt)0≤t≤T . We take as filtration F = (Ft)0≤t≤T the one generated by W
and augmented by the P -nullsets in σ(Ws; s ≤ T ). Consider the Black-Scholes model where the
undiscounted bank account and the undiscounted risky asset price are given by

dS̃0
t

S̃0
t

= rdt,

dS̃1
t

S̃1
t

= µdt+ σdWt,

where µ, r ∈ R and σ > 0. We assume that S̃0
0 = 1 and S̃1

0 > 0.

(a) Consider the n-th root of the stock option, given by

H̃n =
(
S̃1
T

)1/n
,

for n ∈ {1, 2, . . .}.

i) Compute the undiscounted arbitrage-free price Ṽ H̃nt at time t.

Hint: E[etX ] = e
1
2σ

2t2 for X ∼ N(0, σ2).

ii) Find the replicating strategy for H̃n.

(b) Let H̃ = (S̃1
T − 1)+ be a call option, and denote by Ṽ H̃t its undiscounted arbitrage-free price

at time t. Consider the option

J̃ =

{
S̃1
T if S̃1

T < 1,(
S̃1
T

)2
if S̃1

T ≥ 1,
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and denote Ṽ J̃t its undiscounted arbitrage-free price at time t. Show that

Ṽ J̃t ≥ er(T−t)
(
Ṽ H̃t
)2

+ S̃1
t + Ṽ H̃t .

Hint: Use Jensen’s inequality.

Solution 14-3. (a) i) First, recall that

S̃1
t = S1

0 expσWt+(µ− 1
2σ

2)t,

and that

W ∗t = Wt +
µ− r
σ

t

is a Brownian motion under the unique EMM. This will be used in the risk-neutral pricing
formula:

Ṽ H̃nt = e−r(T−t)EQ
[(
S̃1
T

)1/n

|Ft
]

= e−r(T−t)(S̃1
t )

1
nEQ

[( S̃1
T

S̃1
t

)1/n

|Ft
]

= e−r(T−t)
(
S̃1
t

)1/n

EQ
[

exp
(σ
n

(WT −Wt) +
1

n
(µ− σ2

2
)(T − t)

)
|Ft
]

= e−r(T−t)
(
S̃1
t

)1/n

EQ
[

exp
(σ
n

(W ∗T −W ∗t )− µ− r
n

(T − t) +
1

n
(µ− σ2

2
)(T − t)

)
|Ft
]

= e−r(T−t)
(
S̃1
t

)1/n

EQ
[

exp
(σ
n

(W ∗T −W ∗t ) +
1

n
(r − σ2

2
)(T − t)

)
|Ft
]

= e−r(T−t)+
1
n (r−σ22 )(T−t)

(
S̃1
t

)1/n

EQ
[

exp
(σ
n

(W ∗T −W ∗t )
)
|Ft
]

= e−r(T−t)+
1
n (r−σ22 )(T−t)e

σ2

2n2 (T−t)
(
S̃1
t

)1/n

,

where in the last step we used the hint.

ii) We have,

θH̃nt =
∂Ṽ H̃nt

∂S̃1
t

= e−r(T−t)+
1
n (r−σ22 )(T−t)e

σ2

2n2 (T−t) 1

n

(
S̃1
t

)1/n−1

;

ηH̃nt = e−rtṼ H̃nt − e−rtθH̃nt S̃1
t = e−rT+ 1

n (r−σ22 )(T−t)e
σ2

2n2 (T−t)(1− 1

n

)(
S̃1
t

)1/n

.

(b) Just plugging in T and comparing both sides of the equation for the cases S̃1
T < 1 and S̃1

T ≥ 1

gives that J̃ = (H̃)2 + S̃1
T + H̃. Then

Ṽ J̃t = e−r(T−t)EQ[J̃ |Ft]
= e−r(T−t)EQ[(H̃)2 + S̃1

T + H̃|Ft]

≥ e−r(T−t)
(
EQ[H̃|Ft]

)2

+ S̃1
t + Ṽ H̃t

= er(T−t)
(
Ṽ H̃t
)2

+ S̃1
T + Ṽ H̃t

by Jensen’s inequality.
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Exercise 14-4. Consider a financial market (S̃0, S̃1) consisting of a bank account and one stock.

The movements of the bank account S̃0 and the stock price S̃1 are described by the following
trees, where the numbers beside the branches denote transition probabilities and where u > d and
d, r > −0.5.

S̃0 : 1 1 + r (1 + r)(1 + 2r)
1 1

S̃1 : 1

1 + u

1 + d

(1 + u)(1 + 2u)

(1 + u)(1 + 2d)

(1 + d)(1 + u)

(1 + d)(1 + d)

1
2

1
2

1
2

1
2

1
2

1
2

Note that the interest rate is 2r in the second period.

More precisely, let (Ω,F ,P) be the probability space with Ω := {−1, 1}2, F := 2Ω and the
probability measure P defined by P [{(x1, x2)}] := px1

px1,x2
, where

p1 = p−1 :=
1

2
and p1,1 = p1,−1 = p−1,1 = p−1,−1 :=

1

2
.

Next, consider Y1 and Y2 given by

Y1((1, 1)) := Y1((1,−1)) := 1 + u, Y1((−1, 1)) := Y1((−1,−1)) := 1 + d,

Y2((1, 1)) := 1 + 2u, Y2((−1, 1)) := 1 + u,

Y2((1,−1)) := 1 + 2d, Y2((−1,−1)) := 1 + d.

The bank account process S̃0 and the stock price process S̃1 are then given by S̃0
k =

∏k
j=1(1 + jr)

and S̃1
k =

∏k
j=1 Yj for k = 0, 1, 2, respectively. Finally, the filtration F = (F0,F1,F2) is defined

by F0 := {∅,Ω}, F1 := σ(Y1) and F2 := σ(Y1, Y2) = 2Ω = F .

(a) Prove in detail that the market (S̃0, S̃1) is free of arbitrage if and only if both d < r < u and
d < 2r < u are satisfied.

(b) Suppose that u = 0.02, r = 0.01 and d = −0.01. Give an example of a self-financing strategy
ϕ =̂ (0, ϑ) satisfying P[V2(ϕ) ≥ 1000] = 0.25 and V2(ϕ) ≥ 0 P-a.s.

(c) Suppose again that u = 0.02, r = 0.01 and d = −0.01. Does there exist a self-financing
strategy ϕ =̂ (0, ϑ) satisfying V2(ϕ) ≥ 1000 P-a.s.? Justify your answer by either providing
a concrete example of such a strategy or by formally arguing that such a strategy does not
exist.

Solution 14-4. (a) By the fundamental theorem of asset pricing in discrete time (Theorem

2.2.1 in the lecture notes), the market (S̃0, S̃1) is arbitrage-free if and only if there exists an
equivalent martingale measure (EMM) Q for the discounted stock price process S1.

Any probability measure Q equivalent to P on F2 can be described by

Q[{(x1, x2)}] := qx1
qx1,x2

,
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where qx1 , qx1,x2 ∈ (0, 1) satisfying
∑
x1∈{−1,1} qx1 = 1 and

∑
x2∈{−1,1} qx1,x2 = 1 for all

x1 ∈ {−1, 1}. Next, since F0 is trivial, F1 = σ(Y1) and Y1 only takes two values, S1 is a
Q-martingale if and only if q1, q1,1, q−1,1 ∈ (0, 1) and

EQ

[
Y1

1 + r

]
= 1 and EQ

[
Y2

1 + 2r

∣∣∣∣ Y1 = (1 + u)

]
= 1

and EQ

[
Y2

1 + 2r

∣∣∣∣ Y1 = (1 + d)

]
= 1. (15)

This is equivalent to q1, q1,1, q−1,1 ∈ (0, 1) and

q1 × (1 + u) + (1− q1)× (1 + d) = 1 + r ⇐⇒ q1 =
r − d
u− d

,

q1,1 × (1 + 2u) + (1− q1,1)× (1 + 2d) = 1 + 2r ⇐⇒ q1,1 =
2r − 2d

2u− 2d
,

q−1,1 × (1 + u) + (1− q−1,1)× (1 + d) = 1 + 2r ⇐⇒ q−1,1 =
2r − d
u− d

. (16)

In conclusion, the market (S̃0, S̃1) is arbitrage-free if and only if

r − d
u− d

∈ (0, 1) and
2r − d
u− d

∈ (0, 1) ⇐⇒ d < r < u and d < 2r < u. (17)

(b) Note that we have u = 2r, so the market is not free of arbitrage by part (a). The idea is to
short the stock in the case of an “down-movement in the first period. To this end, consider
the strategy ϕ =̂(0, ϑ), where

ϑ1
1 := 0, ϑ1

2((1, 1)) := θ1
2((1,−1)) := 0, ϑ1

2((−1, 1)) := ϑ1
2((−1,−1)) := −c, (18)

where c > 0 is to be determined. Then ϑ is predictable and we have

V2(ϕ)((1, 1)) = 0 + 0×∆S1
1((1, 1)) + 0×∆S1

2((1, 1)) = 0,

V2(ϕ)((1,−1)) = 0 + 0×∆S1
1((1,−1)) + 0×∆S1

2((1,−1)) = 0,

V2(ϕ)((−1, 1)) = 0 + 0×∆S1
1((−1, 1))− c×∆S1

2((−1, 1))

= −c×
(

(1 + d)(1 + 2r)

(1 + r)(1 + 2r)
− 1 + d

1 + r

)
= −c× 0 = 0,

V2(ϕ)((−1,−1)) = 0 + 0×∆S1
1((−1,−1))− c×∆S1

2((−1,−1))

= −c×
(

(1 + d)(1 + d)

(1 + r)(1 + 2r)
− 1 + d

1 + r

)
= −c×

(
1 + d

1 + r
× d− 2r

1 + 2r

)
= c× 0.99× 0.03

1.01× 1.02
. (19)

Choosing c large enough, i.e. c ≥ 1000 × 1.01×1.02
0.99×0.03 = 34686.86 gives the desired strategy as

P[{(−1, 1)}] = 1/2× 1/2 = 0.25.

(c) Such a strategy does not exist. Seeking a contradiction, suppose that there exists a strategy
ϕ =̂(0, ϑ) such that V2(ϕ) ≥ 1000 P-a.s. Then in particular we have V2(ϕ)((−1, 1)) ≥ 1000.
Since ∆S1

2((−1, 1)) = 0 (see above), it follows that V1(ϕ)((−1, 1)) ≥ 1000. But given that

d < r < u, the market (S̃0, S̃1) is free of arbitrage in the first-period and since V0(ϕ) = 0,
we necessarily have V1(ϕ)((1, 1)) = V1(ϕ)((1,−1)) < 0. Again since d < r < u, after an

up-movement in the first period the market (S̃0, S̃1) is free of arbitrage in the second period.
Thus we cannot have V1(ϕ)((1, 1)) = V1(ϕ)((1,−1)) < 0 and V2(ϕ)((1, 1)) ≥ 1000 > 0 and
V2(ϕ)((1,−1)) ≥ 1000 > 0. Thus, we arrive at a contradiction.
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Exercise 14-5. Consider a one-period financial market (S̃0, S̃1, S̃2) consisting of a bank account

S̃0 with interest rate r := 0.1 and two stocks S̃1, S̃2. The movements of S̃1 and S̃2 are given by
the following trees, where the numbers beside the branches denote transition probabilities.

(S̃1

S̃2

)
:

(
132
121

)
(
110
110

)
(
88
99

)

1
2

3
10

1
5

More precisely, let (Ω,F ,P) be the probability space with Ω := {1, 0,−1}, F := 2Ω and the
probability measure P defined by P[{1}] := 0.5, P[{0}] := 0.3 and P[{−1}] := 0.2. Next, consider
Y 1

1 and Y 1
2 given by

Y 1
1 (1) = 1.32, Y 1

1 (0) := 1.1, Y 1
1 (−1) := 0.88,

Y 2
1 (1) = 1.21, Y 2

1 (0) := 1.1, Y 2
1 (−1) := 0.99,

The movements of the bank account S̃0 and the two stocks S̃1 and S̃2 are then given by

S̃0
0 := 1, S̃1

0 := S̃2
0 := 100, S̃0

1 := 1.1, S̃1
1 := 100Y 1

1 , S̃2
1 := 100Y 2

1 .

Finally, the filtration F = (F0,F1) is defined by F0 := {∅,Ω} and F1 := 2Ω = F .

(a) Show that the market (S̃0, S̃1, S̃2) is free of arbitrage and incomplete.

(b) The undiscounted payoff of an exchange option is given by

H̃EX :=
(
S̃1

1 − S̃2
1

)+

:= max
(

0, S̃1
1 − S̃2

1

)
.

Compute the set of all arbitrage-free prices for H̃EX . Does there exist an admissible self-

financing strategy ϕ =̂(3, ϑ) such that V1(ϕ) = H̃EX

1+r P-a.s.?

(c) Compute an admissible self-financing strategy ϕ =̂(5, ϑ), which superreplicates H̃EX , i.e. sat-

isfies V1(ϕ) ≥ H̃EX

1+r P-a.s.

Solution 14-5. (a) By the fundamental theorem of asset pricing in discrete time (Theorem
2.2.1 in the lecture notes), showing that the market is arbitrage-free is equivalent to showing
that there exists an equivalent martingale measure (EMM) Q for the discounted stock prices
S = (S1, S2). Note that the movements of the discounted stock price processes S1 and S2

are given by the following trees, where the numbers beside the branches denote transition
probabilities.
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(S̃1

S̃2

)
:

(
120
110

)
(
100
100

)
(
80
90

)

1
2

3
10

1
5

Observe that S2 = 1
2S

1 + 50. Hence S = (S1, S2) is a Q-martingale if and only if S1 is
a Q-martingale. Next, any probability measure Q equivalent to P on F1 can be described
by a probability vector (q1, q0, q−1), where q1 := Q[{1}], q0 := Q[{0}], q−1 := Q[{−1}] and
0 < q1, q0, q−1 < 1. Then S1 and hence S is a Q-martingale if and only if

EQ[S1
1 ] = S1

0 ,

0 < q1, q0, q−1 < 1. (20)

This is equivalent to

120× q1 + 100× q0 + 80× q−1 = 100,

q1 + q0 + q−1 = 1,

0 < q1, q0, q−1 < 1, (21)

which is equivalent to

20× q1 − 20q−1 = 0,

q1 + q0 + q−1 = 1,

0 < q1, q0, q−1 < 1, (22)

which is in turn equivalent to

q1 = q−1

q0 = 1− 2q1,

0 < q1, q0, q−1 < 1. (23)

Thus, the set Pe(S) of all equivalent martingale measures for S can be described by

Pe(S) = {(λ, 1− 2λ, λ) | λ ∈ (0, 0.5)}. (24)

Since Pe(S) is nonempty and consist of more than one element, the market (S̃0, S̃1, S̃2) is
arbitrage-free and incomplete.
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(b) Denote by Qλ the EMM corresponding to the probability vector (λ, 1− 2λ, λ). Then the set

PH̃EX of all arbitrage-free prices for H̃EX is given by

PH̃EX =
{
EQλ

[H̃EX

1 + r

] ∣∣∣λ ∈ (0, 0.5)
}

= {λ× 10 + (1− 2λ)× 0 + λ× 0 | λ ∈ (0, 0.5)}
= (0, 5) . (25)

The set PH̃EX is an nonempty open interval. In particular, the mapping Pe(S) → R,

Q 7→ EQ[ H̃
EX

1+r ] is not constant. By the characterisation of attainable payoffs (Theorem 3.1.2

in the lecture notes) it follows immediately that H̃EX is not attainable. Hence, there does

not exist an admissible self-financing strategy ϕ =̂(3, ϑ) with V1(ϕ) = H̃EX

1+r P-a.s.

(c) Using that S2 = 1
2S

1 + 50, we may assume without loss of generality that ϑ2 ≡ 0, i.e. we
only use the bank account and the first stock for hedging. Hence consider a self-financing
strategy ϕ =̂(5, ϑ), with ϑ1

1 = c and ϑ2
1 = 0, where c ∈ R is to be determined. Then ϕ is a

superreplication strategy for H̃EX if and only if

5 + c×∆S1
1(1) ≥ H̃EX(1)

1 + r
⇐⇒ 5 + c× 20 ≥ 10 ⇐⇒ c ≥ 1/4,

5 + c×∆S1
1(0) ≥ H̃EX(0)

1 + r
⇐⇒ 5 + c× 0 ≥ 0 ⇐⇒ c ∈ R,

5 + c×∆S1
1(−1) ≥ H̃EX(−1)

1 + r
⇐⇒ 5− c× 20 ≥ 0 ⇐⇒ c ≤ 1/4. (26)

Choosing c = 1/4 gives the desired superreplication strategy.

For further information please see

www.math.ethz.ch/education/bachelor/lectures/hs2014/math/mff/ and
www.math.ethz.ch/assistant_groups/gr3/praesenz .
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