Problem set - Week 13

LINEAR DIFFERENTIAL EQUATIONS

1. Find the solution of

$$
y^{\prime}=5 x-\frac{3 y}{x}
$$

with initial condition $y(1)=2$.
2. Find the solution for
(a) $y^{\prime \prime}+4 y=0$
(b) $2 y^{\prime \prime}+7 y^{\prime}=4 y$
(c) $y^{\prime \prime}+2 y^{\prime}+y=0$
(d) $y^{\prime \prime \prime}-y^{\prime \prime}-9 y^{\prime}+9 y=0$
3. Find the solution for $y^{\prime \prime}=x+y$.
4. The goal of this exercise is to prove that any initial value problem for the simultaneous system of differential equations

$$
\left|\begin{array}{l}
d x / d t=y+x\left(1-x^{2}-y^{2}\right) \\
d y / d t=-x+y\left(1-x^{2}-y^{2}\right)
\end{array}\right|
$$

has a uniquely determined solution $(x(t), y(t))$ for all $t \in \mathbb{R}$.
(a) The system above probably has a simpler form if expressed in polar coordinates. Set $x=r \cos \theta, y=r \sin \theta$ and rewrite the system as

$$
\left|\begin{array}{l}
d r / d t=\ldots \\
d \theta / d t=\ldots
\end{array}\right|
$$

(b) Solve the system you found in (a).
(c) Check that if the initial condition on the system is $(x(0), y(0))=(0,0)$, the unique solution is $(x(t), y(t))=(0,0)$ for all $t \in \mathbb{R}$.
(d) Suppose the initial condition is $(x(0), y(0)) \neq(0,0)$. Find the solution $(x(t), y(t))$ of the initial value problem.
(e) Observe that the solution you determined in (d) is uniquely determined and exists for all $t \in \mathbb{R}$.

