Problem set - Week 2

Linear dependence \& matrix multiplication

1. A bit of vector algebra.
(a) Find all vectors perpendicular to $\left(\begin{array}{c}1 \\ 3 \\ -1\end{array}\right)$. Drawing a sketch might help !
(b) Find all solutions x_{1}, x_{2}, x_{3} of the equation $\vec{b}=x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+x_{3} \vec{v}_{3}$, where

$$
\vec{b}=\left(\begin{array}{c}
-8 \\
-1 \\
2 \\
15
\end{array}\right), \quad \vec{v}_{1}=\left(\begin{array}{l}
1 \\
4 \\
7 \\
5
\end{array}\right), \quad \vec{v}_{2}=\left(\begin{array}{l}
2 \\
5 \\
8 \\
3
\end{array}\right), \quad \vec{v}_{3}=\left(\begin{array}{l}
4 \\
6 \\
9 \\
1
\end{array}\right) .
$$

(c) Are $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ linearly dependent?
2. Consider the three vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ in the x - y-plane :

Are \vec{v}_{1}, \vec{v}_{2} linearly dependent? What about $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$? Argue geometrically.
3. Write the system

$$
\left|\begin{array}{c}
x+2 y+3 z=1 \\
4 x+5 y+6 z=4 \\
7 x+8 y+9 z=9
\end{array}\right|
$$

in matrix form.
4. If possible, compute the following matrix products.
(a)

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

(b) $\quad\left(\begin{array}{cc}1 & -1 \\ -2 & 2\end{array}\right)\left(\begin{array}{ll}7 & 5 \\ 3 & 1\end{array}\right)$
(c)
$\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$
(d) $\quad\left(\begin{array}{cc}1 & -1 \\ 0 & 2 \\ 2 & 1\end{array}\right)\left(\begin{array}{ll}3 & 2 \\ 1 & 0\end{array}\right)$
(e) $\quad\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
(f) $\quad\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$
(g) $\quad\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 1 \\ 1 & -1 & -2\end{array}\right)\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 3\end{array}\right)$
(h) $\quad\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
(i) $\quad\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right)\left(\begin{array}{cc}-6 & 8 \\ 3 & -4\end{array}\right)$
(j) $\quad\left(\begin{array}{lll}1 & 0 & -1\end{array}\right)\left(\begin{array}{ll}1 & 2 \\ 2 & 1 \\ 1 & 1\end{array}\right)$
(k)

$$
\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right)
$$

(l) $\quad\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$
5. Introducing inverses for 2×2 matrices.
(a) Find all vectors \vec{x} such that $A \vec{x}=\vec{b}$, where

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \quad \vec{b}=\binom{2}{1}
$$

(b) Prove: The 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is invertible if and only if $a d-b c \neq 0$.
(Hint : Consider the cases $a=0$ and $a \neq 0$ separately.)
(c) Prove: If A is invertible, then its inverse is given by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

(d) Use the formula in (c) to compute \vec{x} in (a).
6. The goal of this exercise is to give a geometric interpretation of the linear transformations defined by the matrices

$$
A=\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right) \quad B=\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right) \quad C=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Start by showing the effect of these transformations on the letter L:

In each case, decide whether the transformation is invertible. Find the inverse if it exists, and interpret it geometrically.

