Problem set - Week 7

Eigenvalues and eigenvectors Changing bases

1. For which values of k does $\left(\begin{array}{cc}-1 & k \\ 4 & 3\end{array}\right)$ have 5 as an eigenvalue ?
2. Check that the characteristic polynomial of a 2×2-matrix A is

$$
p_{A}(\lambda)=\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)
$$

Let λ_{1} and λ_{2} be eigenvalues of A. What is the relation between $\operatorname{tr}(A), \operatorname{det}(A)$, λ_{1} and λ_{2} ?
If you are stuck, consider explicitly $A=\left(\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right)$.
3. Determine all eigenvalues and eigenvectors of $\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 0 \\ 2 & 0 & 1\end{array}\right)$.
4. A reflection about a line in the plane passing through the origin is expressed via a matrix of the form

$$
\left(\begin{array}{cc}
a & b \\
b & -a
\end{array}\right)
$$

with $a^{2}+b^{2}=1$. Conversely any such matrix represents a reflection about a line. Express the matrix

$$
A=\left(\begin{array}{cc}
3 & 4 \\
4 & -3
\end{array}\right)
$$

as a reflection combined with a scaling.
Determine geometrically, i.e. without computing the characteristic equation, all the eigenvalues of A, and give two linearly independent eigenvectors.
5. Let A be a symmetric $n \times n$ matrix. Prove the following statements.
(a) $A \vec{v} \cdot \vec{w}=\vec{v} \cdot A \vec{w}$.
(b) If \vec{v} and \vec{w} are two eigenvectors of A with distinct eigenvalues, then \vec{w} is orthogonal to \vec{v}.
(c) Find a basis of \mathbb{R}^{3} that consists of eigenvectors for

$$
A=\left(\begin{array}{lll}
1 & 2 & 0 \\
2 & 0 & 2 \\
0 & 2 & 1
\end{array}\right)
$$

6. For the following data, find the matrix B of the linear transformation $T \vec{v}=A \vec{v}$ with respect to the basis \mathcal{B}. For practice, solve each problem in three ways ; using the formula $B=S^{-1} A S$, using a commutative diagram, constructing B column by column.
(a) $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right), \mathcal{B}=\left\{\binom{1}{3},\binom{-2}{1}\right\}$
(b) $A=\left(\begin{array}{cc}-3 & 4 \\ 4 & 3\end{array}\right), \mathcal{B}=\left\{\binom{1}{2},\binom{-2}{1}\right\}$
