Problem set – Week 7

EIGENVALUES AND EIGENVECTORS CHANGING BASES

- 1. For which values of k does $\begin{pmatrix} -1 & k \\ 4 & 3 \end{pmatrix}$ have 5 as an eigenvalue?
- 2. Check that the characteristic polynomial of a 2×2 -matrix A is

$$p_A(\lambda) = \lambda^2 - \operatorname{tr}(A)\lambda + \det(A).$$

Let λ_1 and λ_2 be eigenvalues of A. What is the relation between $\operatorname{tr}(A)$, $\det(A)$, λ_1 and λ_2 ?

If you are stuck, consider explicitly $A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$.

- 3. Determine all eigenvalues and eigenvectors of $\begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \\ 2 & 0 & 1 \end{pmatrix}$.
- 4. A reflection about a line in the plane passing through the origin is expressed via a matrix of the form

$$\begin{pmatrix} a & b \\ b & -a \end{pmatrix}$$

with $a^2 + b^2 = 1$. Conversely any such matrix represents a reflection about a line. Express the matrix

$$A = \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix}$$

as a reflection combined with a scaling.

Determine geometrically, i.e. without computing the characteristic equation, all the eigenvalues of A, and give two linearly independent eigenvectors.

- 5. Let A be a symmetric $n \times n$ matrix. Prove the following statements.
 - (a) $A\vec{v} \cdot \vec{w} = \vec{v} \cdot A\vec{w}$.
 - (b) If \vec{v} and \vec{w} are two eigenvectors of A with distinct eigenvalues, then \vec{w} is orthogonal to \vec{v} .
 - (c) Find a basis of \mathbb{R}^3 that consists of eigenvectors for

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & 2 \\ 0 & 2 & 1 \end{pmatrix}.$$

6. For the following data, find the matrix B of the linear transformation $T\vec{v}=A\vec{v}$ with respect to the basis \mathcal{B} . For practice, solve each problem in three ways; using the formula $B=S^{-1}AS$, using a commutative diagram, constructing B column by column.

(a)
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$$
, $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \end{pmatrix} \right\}$

(b)
$$A = \begin{pmatrix} -3 & 4 \\ 4 & 3 \end{pmatrix}$$
, $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \end{pmatrix} \right\}$