Solutions - Week 1

Linear systems \& Gauss elimination

1. Solve the following linear systems via elimination.
(a) $\left|\begin{array}{l}x+2 y+3 z=8 \\ x+3 y+3 z=10 \\ x+2 y+4 z=9\end{array}\right|$
(b) $\left|\begin{array}{c}x-2 y=2 \\ 3 x+5 y=17\end{array}\right|$
(c) $\left|\begin{array}{c}x+4 y+z=0 \\ 4 x+13 y+7 z=0 \\ 7 x+22 y+13 z=0\end{array}\right|$
(d) $\left|\begin{array}{ccc}x+4 y+z & =0 \\ 4 x+13 y+7 z & =0 \\ 7 x+22 y+13 z & =1\end{array}\right|$

Sketch the solutions of (b) graphically, as intersection of lines in the $x-y$-plane. Describe your solutions to (c) in terms of intersecting planes. Here are another two linear systems to solve.

Solutions :

(a) Comparing first and third rows yields $z=1$. Comparing first and second rows yields $y=2$. Plugging $y=2$ and $z=1$ in the first row finally yields $x=1$. The solution of this system is exactly the point $(1,2,1)$ in $x-y$ - z-space.
(b) Subtracting three times the first row to the second, we obtain $11 y=11$. Plugging $y=1$ in the first row, $x=4$. The point $(4,1)$ is exactly the intersection of the lines $\left\{y=\frac{x}{2}-1\right\}$ and $\left\{y=-\frac{3}{5} x+\frac{17}{5}\right\}$.
(c) By elimination, we reduce the system to

$$
\left|\begin{array}{rl}
x & +4 y+z=0 \\
& -3 y+3 z=0 \\
& -6 y+6 z=0
\end{array}\right|
$$

and further to

$$
\left|\begin{array}{c}
x+5 y \\
\\
-y+z=
\end{array}\right|
$$

Each row describes a plane in $x-y$ - z-space. The intersection of these two planes is a line, whose points are all solutions of the system. Set $y=t$ to be an arbitrary real number. Then $z=t$ and $x=-5 t$. The line in question is then parametrized by $\{t(-5,1,1): t \in \mathbb{R}\}$ and passes through the origin.
(d) The system reduces to

$$
\left|\begin{array}{r}
x+4 y+z=0 \\
-3 y+3 z=0 \\
-6 y+6 z=1
\end{array}\right|
$$

Comparing the last two rows, we can see that the system is inconsistent; it can have no solutions, because $1=0$ is never true.
(e) Summing up the first two rows, $3 x=6$. Plugging it in in any row, $y=-1$. Observe that there are more rows in this system than necessary to find its solution.
(f) We reduce the system to

$$
\left|\begin{array}{rl}
x_{1}+2 x_{3} & = \\
x_{2}-3 x_{3} & = \\
x_{4} & = \\
& -2
\end{array}\right|
$$

with solution the line $(0,4,0,-2)+t(-1,3,1,0)$.
2. Consider the linear system

$$
\left|\begin{array}{c}
x+y-z= \\
3 x-5 y+13 z= \\
3 x+18 \\
x-2 y+5 z=
\end{array}\right|
$$

where k is an arbitrary constant.
(a) For which value(s) of k does this system have one or infinitely many solutions?
(b) For each of these values, how many solutions does the system have?
(c) Write down all solutions.

Solutions :

(a) The first reductions yield

$$
\left|\begin{array}{rl}
x+y-z & =-2 \\
y-2 z & =-3 \\
0 & =
\end{array}\right|
$$

hence $k=7$ is a necessary condition for the system to be consistent.
(b) With $k=7$, the last row now amounts to $0=0$ and we can discard it. We are left with two equations of three variables, that is, geometrically, two planes. If these two equations admit a simultaneous solution, the two planes intersect in a line, of which each point is a solution. There are an infinity of solutions.
(c) The line is parametrized as $(1,-3,0)+t(-1,2,1), t \in \mathbb{R}$.
3. Why are linear systems particularly easy to solve when they are in triangular form ? Answer by considering the upper triangular system

$$
\left|\begin{array}{rl}
x_{1}+2 x_{2}-x_{3}+4 x_{4} & = \\
x_{2}+3 x_{3}+7 x_{4} & =5 \\
x_{3}+2 x_{4} & =2 \\
x_{4} & =0
\end{array}\right|
$$

Solution : Proceed by backwards substitution : The last row tells you that $x_{4}=0$. Plug in this solution in the second-to-last row to obtain the value of x_{3}. Do similarly in the second row by plugging in the values you have for x_{3} and x_{4}, you now know x_{2}, and so forth.
4. Find a system of linear equations with three unknowns whose solutions are the points on the line through $(1,1,1)$ and $(3,5,0)$.
Solution : The line passing through points $(1,1,1)$ and $(3,5,0)$ is parametrized by

$$
L:\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+\alpha\left(\left(\begin{array}{l}
3 \\
5 \\
0
\end{array}\right)-\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+\alpha\left(\begin{array}{c}
2 \\
4 \\
-1
\end{array}\right), \quad \alpha \in \mathbb{R} .
$$

We wish to set up a system of linear equations in three unknowns x, y, z, of which $x=1+2 \alpha, y=1+4 \alpha, z=1-\alpha$ are solutions. Observe that this amounts to

$$
x=-2 z+3, \quad y=2 x-1
$$

Then for the linear system described by the two planes

$$
\left|\begin{array}{c}
x+2 z=3 \\
2 x-y=1
\end{array}\right|
$$

each point on the line L is a solution.
5. We call a function f a polynomial of degree 2 if it is of the form $f(t)=a t^{2}+b t+c$, with $a \neq 0$. Find the polynomial of degree 2 whose graph passes through the points $(-1,1),(2,3)$ and $(3,13)$ in the x - y-plane.

Solution : We want to find a polynomial $f(t)=a t^{2}+b t+c$ such that $f(-1)=1$, $f(2)=3, f(3)=13$. This amounts to solve the linear system

$$
\left|\begin{array}{c}
a-b+c=1 \\
4 a+2 b+c=3 \\
9 a+3 b+c=13
\end{array}\right|
$$

The resulting polynomial is $f(t)=\frac{7}{3} t^{2}-\frac{5}{3} t-3$.
6. Let us assume that parking meters in Zurich only accept coins of 20ct, 50ct and 1 Fr . As an incentive, the city council offers a reward to any patrolman who, from his daily round, brings back exactly 1000 coins, worth exactly 1000 Fr .
What are the odds for this reward to be claimed any time soon?
Solution : Let x denote the number of 20ct coins, y the number of 50 ct coins and z the number of 1 fr . coins. The two conditions to claim the reward are

$$
\left|\begin{array}{c}
x+y+z=1000 \\
\frac{1}{5} x+\frac{1}{2} y+z=1000
\end{array}\right|
$$

The solution of the system is $x=-\frac{5}{3}(1000-z), y=\frac{8}{3}(1000-z)$. Note that x, by definition, needs to be a non-negative integer and that since $z \leqslant 1000, x \geqslant 0$ forces $z=1000$. The only possible solution is $x=0, y=0, z=1000$.

