Solutions – Week 5

LEVEL CURVES, LEVEL SURFACES, PARTIAL DERIVATIVES, VECTOR FIELDS AND LINE INTEGRALS

- 1. For each of the following functions, sketch the surface z = f(x, y) and a typical level curve.
 - (a) $f(x,y) = y^2$

 - (b) f(x,y) = 1 |x| |y|(c) $f(x,y) = \sqrt{x^2 + y^2 4}$

For each of the following functions, sketch a typical level surface

- (d) $f(x, y, z) = \ln(x^2 + y^2 + z^2)$
- (e) f(x, y, z) = z
- (f) $f(x, y, z) = x^2 + y^2$

Solutions: Level curves: (a) the two parallel lines $y = \sqrt{c}$ and $y = -\sqrt{c}$; (b) lozenge centered at the origin; (c) circle centered at the origin; (d) sphere centered at the origin; (e) plane parallel to xy-plane; (f) cylinder centered around z-axis.

2. Find the line that is tangent to the intersection of $z = \arctan(xy)$ with the plane x = 2 at $(2, 1/2, \pi/4)$.

Solution: $(1, 1/2, \pi/4) + t(0, 1, 1)$

- 3. We know that if f_{xy} and f_{yx} exist, then $f_{xy} = f_{yx}$. For the following functions, try to determine what is the fastest way of computing f_{xy} without writing anything down; should you differentiate in x or in y first?
 - (a) $f(x,y) = x \sin y + e^y$
 - (b) f(x,y) = 1/x
 - (c) f(x,y) = y + (x/y)
 - (d) $f(x,y) = y + x^2y + 4y^3 \ln(y^2 + 1)$
 - (e) $f(x,y) = x^2 + 5xy + \sin x + 7e^x$
 - (f) $f(x,y) = x \ln xy$

Solutions: (a) x; (b) y; (c) x; (d) x; (e) y; (f) y.

4. Compute the mass of a wire that lies along the curve $\mathbf{r}(t) = (t^2 - 1)\mathbf{j} + 2t\mathbf{k}$, $t \in [0, 1]$, if the density is $\delta = (3/2)t$.

Solution: $2\sqrt{2} - 1$.

5. Give a formula $\mathbf{F} = M(x,y)\mathbf{i} + N(x,y)\mathbf{j}$ for the vector field that points toward the origin with magnitude inversely proportional to the square of the distance from (x,y) to (0,0). Note: The field is not defined at the origin.

Solution: $\mathbf{F}(x,y) = \frac{-x}{(x^2+y^2)^{3/2}}\mathbf{i} + \frac{-y}{(x^2+y^2)^{3/2}}\mathbf{j}$.

6. Determine the work done by the gradient of $f(x,y) = (x+y)^2$ counterclockwise around the circle $x^2 + y^2 = 4$ from (2,0) to itself.

Solution: 0.

7. A particle is moving along a smooth curve y = f(x) from (a, f(a)) to (b, f(b)). The force moving the particle has constant magnitude k and is always pointing away from the origin. Show that the work done by the force is

$$k\left((b^2+(f(b))^2)^{1/2}-(a^2+(f(a))^2)^{1/2}\right).$$

Solution: To be discussed in class.