Solutions - Week 5

LEVEL CURVES, LEVEL SURFACES, PARTIAL DERIVATIVES, VECTOR FIELDS AND LINE INTEGRALS

1. For each of the following functions, sketch the surface $z=f(x, y)$ and a typical level curve.
(a) $f(x, y)=y^{2}$
(b) $f(x, y)=1-|x|-|y|$
(c) $f(x, y)=\sqrt{x^{2}+y^{2}-4}$

For each of the following functions, sketch a typical level surface
(d) $f(x, y, z)=\ln \left(x^{2}+y^{2}+z^{2}\right)$
(e) $f(x, y, z)=z$
(f) $f(x, y, z)=x^{2}+y^{2}$

Solutions : Level curves : (a) the two parallel lines $y=\sqrt{c}$ and $y=-\sqrt{c}$; (b) lozenge centered at the origin ; (c) circle centered at the origin ; (d) sphere centered at the origin ; (e) plane parallel to $x y$-plane ; (f) cylinder centered around z-axis.
2. Find the line that is tangent to the intersection of $z=\arctan (x y)$ with the plane $x=2$ at $(2,1 / 2, \pi / 4)$.
Solution : $(1,1 / 2, \pi / 4)+t(0,1,1)$
3. We know that if $f_{x y}$ and $f_{y x}$ exist, then $f_{x y}=f_{y x}$. For the following functions, try to determine what is the fastest way of computing $f_{x y}$ without writing anything down ; should you differentiate in x or in y first ?
(a) $f(x, y)=x \sin y+e^{y}$
(b) $f(x, y)=1 / x$
(c) $f(x, y)=y+(x / y)$
(d) $f(x, y)=y+x^{2} y+4 y^{3}-\ln \left(y^{2}+1\right)$
(e) $f(x, y)=x^{2}+5 x y+\sin x+7 e^{x}$
(f) $f(x, y)=x \ln x y$

Solutions : (a) x; (b) y; (c) x; (d) x; (e) y; (f) y.
4. Compute the mass of a wire that lies along the curve $\mathbf{r}(t)=\left(t^{2}-1\right) \mathbf{j}+2 t \mathbf{k}$, $t \in[0,1]$, if the density is $\delta=(3 / 2) t$.
Solution : $2 \sqrt{2}-1$.
5. Give a formula $\mathbf{F}=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$ for the vector field that points toward the origin with magnitude inversely proportional to the square of the distance from (x, y) to $(0,0)$. Note : The field is not defined at the origin.
Solution : $\mathbf{F}(x, y)=\frac{-x}{\left(x^{2}+y^{2}\right)^{3 / 2}} \mathbf{i}+\frac{-y}{\left(x^{2}+y^{2}\right)^{3 / 2}} \mathbf{j}$.
6. Determine the work done by the gradient of $f(x, y)=(x+y)^{2}$ counterclockwise around the circle $x^{2}+y^{2}=4$ from $(2,0)$ to itself.
Solution: 0 .
7. A particle is moving along a smooth curve $y=f(x)$ from $(a, f(a))$ to $(b, f(b))$. The force moving the particle has constant magnitude k and is always pointing away from the origin. Show that the work done by the force is

$$
k\left(\left(b^{2}+(f(b))^{2}\right)^{1 / 2}-\left(a^{2}+(f(a))^{2}\right)^{1 / 2}\right) .
$$

Solution : To be discussed in class.

