Problem set - Week 8

Extrema problems

1. Find the absolute extrema of the surface $f(x, y)=\left(4 x-x^{2}\right) \cos (y)$ on the rectangular plate $1 \leq x \leq 3,-\pi / 4 \leq y \leq \pi / 4$.

Solutions : Abs. max is 4 at $(2,0)$, abs. min is $3 \sqrt{2} / 2$ at points $(3, \pm \pi / 4)$, ($1, \pm \pi / 4$).
2. A flat circular plate P of radius 1 is heated (included the boundary of the plate) so that the temperature at the point $(x, y) \in P$ is

$$
T(x, y)=x^{2}+2 y^{2}-x
$$

Find the temperatures at the hottest and coldest points on the plate.
Solutions : Hottest : 9/4, coldest : $-1 / 4$.
3. Find the numbers $a \leq b$ such that the integral

$$
\int_{a}^{b}\left(e^{x^{2}}-2\right) d x
$$

has its largest value.
Solution : Ha, oups. As you will have understood after some investigation, I meant to ask you for the smallest value. That happens at $(-\sqrt{\ln 2}, \sqrt{\ln 2})$. Sorry.
4. Find three numbers whose sum is 9 and whose sum of squares is a minimum.

Solution : $a=3, b=3, c=3$.
5. Among all the points on the surface $z=10-x^{2}-y^{2}$ that lie above the plane $x+2 y+3 z=0$, find the point farthest from the plane.
Solution : ($1 / 6,1 / 3,355 / 36$).
6. The Hessian matrix of $f(x, y)=x^{2} y^{2}$ at $(0,0)$ is the zero matrix. Determine whether the function has an extremum or not at the origin by imagining what the surface looks like.
Solution : The function is trivially zero on the coordinate axes and positive everywhere else.
7. In this exercise, we give a proof that the geometric mean is \leq the arithmetic mean, for any set of n non-negative real numbers, i.e.

$$
\begin{equation*}
\left(a_{1} \cdots a_{n}\right)^{1 / n} \leq \frac{a_{1}+\cdots+a_{n}}{n} \tag{1}
\end{equation*}
$$

(a) Explain why the maximum value of $x^{2} y^{2} z^{2}$ on a sphere of radius r centered at the origin is $\left(r^{2} / 3\right)^{3}$.
Solution : Follows from solving the extremum problem.
(b) Deduce (1) from (a) for $n=3$.

Solution : a_{1}, a_{2}, a_{3} are non-negative, hence you can write $a_{i}=\left(\sqrt{a_{i}}\right)^{2}$, for each $i=1,2,3$. Let $r=\sqrt{a_{1}+a_{2}+a_{3}}$. Hence now $\left(\sqrt{a_{1}}, \sqrt{a_{2}}, \sqrt{a_{3}}\right)$ lies on the sphere of radius r centered at the origin, and by part (a),

$$
a_{1} a_{2} a_{3} \leq\left(\frac{a_{1}+a_{2}+a_{3}}{3}\right)^{3}
$$

(c) Explain how the argument can be seen to hold more generally for any $n \geq 1$.

Solution : In (a), you will have observed that there are two types of critical points $(x, y, z) \in \mathbb{R}^{3}$; those with at least one component $=0$ and the point $\left(r^{2} / 3, r^{2} / 3, r^{2} / 3\right)$. The same thing holds in \mathbb{R}^{n}; Fix the n-th coordinate and set

$$
f\left(x_{1}, \ldots, x_{n-1}\right)=\prod_{i=1}^{n-1} x_{i}^{2}\left(r^{2}-\sum_{i=1}^{n-1} x_{i}^{2}\right)
$$

then

$$
f_{x_{i}}\left(x_{1}, \ldots, x_{n-1}\right)=2 x_{i} \prod_{\substack{j=1 \\ j \neq i}}^{n-1} x_{j}^{2}\left(r^{2}-\sum_{j=1}^{n-1} x_{j}^{2}-x_{i}^{2}\right)
$$

Take $\vec{x} \in \mathbb{R}^{n-1}$ such that $x_{j} \neq 0$ for all $j=1, \ldots, n-1$, then adding up all equations of the linear system

$$
\left|\begin{array}{ccc}
f_{x_{1}}(\vec{x}) & = & 0 \\
f_{x_{2}}(\vec{x}) & = & 0 \\
\vdots & \vdots & \vdots \\
f_{x_{n-1}}(\vec{x}) & = & 0
\end{array}\right|
$$

we obtain

$$
\sum_{j=1}^{n-1} x_{j}^{2}+(n-1) \sum_{j=1}^{n-1} x_{j}^{2}=n \sum_{j=1}^{n-1} x_{j}^{2}=n\left(r^{2}-x_{n}^{2}\right)=(n-1) r^{2}
$$

hence $x_{n}^{2}=r^{2} / n$. More generally, fixing the k-th coordinate, you obtain $x_{k}^{2}=r^{2} / n$. Therefore, the only non-trivial critical point of $x_{1}^{2} \cdots x_{n}^{2}$ on the ($n-1$)-dimensional sphere of radius r is $\left(r^{2} / n, \ldots, r^{2} / n\right)$. Part (b) extends immediately to general n.

