
D-ARCH Mathematics Fall 2014

Problem set – Week 8
Extrema problems

1. Find the absolute extrema of the surface f(x, y) = (4x− x2) cos(y) on the rect-
angular plate 1 ≤ x ≤ 3, −π/4 ≤ y ≤ π/4.

Solutions : Abs. max is 4 at (2,0), abs. min is 3
√
2/2 at points (3,±π/4),

(1,±π/4).

2. A flat circular plate P of radius 1 is heated (included the boundary of the plate)
so that the temperature at the point (x, y) ∈ P is

T (x, y) = x2 + 2y2 − x.

Find the temperatures at the hottest and coldest points on the plate.

Solutions : Hottest : 9/4, coldest : −1/4.

3. Find the numbers a ≤ b such that the integral∫ b

a

(
ex

2 − 2
)
dx.

has its largest value.

Solution : Ha, oups. As you will have understood after some investigation, I
meant to ask you for the smallest value. That happens at (−

√
ln 2,
√
ln 2). Sorry.

4. Find three numbers whose sum is 9 and whose sum of squares is a minimum.

Solution : a = 3, b = 3, c = 3.
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5. Among all the points on the surface z = 10 − x2 − y2 that lie above the plane
x+ 2y + 3z = 0, find the point farthest from the plane.

Solution : (1/6, 1/3, 355/36).

6. The Hessian matrix of f(x, y) = x2y2 at (0, 0) is the zero matrix. Determine
whether the function has an extremum or not at the origin by imagining what
the surface looks like.

Solution : The function is trivially zero on the coordinate axes and positive
everywhere else.

7. In this exercise, we give a proof that the geometric mean is ≤ the arithmetic
mean, for any set of n non-negative real numbers, i.e.

(a1 · · · an)1/n ≤
a1 + · · ·+ an

n
. (1)

(a) Explain why the maximum value of x2y2z2 on a sphere of radius r centered
at the origin is (r2/3)3.
Solution : Follows from solving the extremum problem.

(b) Deduce (1) from (a) for n = 3.
Solution : a1, a2, a3 are non-negative, hence you can write ai = (

√
ai)

2, for
each i = 1, 2, 3. Let r =

√
a1 + a2 + a3. Hence now (

√
a1,
√
a2,
√
a3) lies on

the sphere of radius r centered at the origin, and by part (a),

a1a2a3 ≤
(
a1 + a2 + a3

3

)3

.

(c) Explain how the argument can be seen to hold more generally for any n ≥ 1.
Solution : In (a), you will have observed that there are two types of critical
points (x, y, z) ∈ R3 ; those with at least one component = 0 and the point
(r2/3, r2/3, r2/3). The same thing holds in Rn ; Fix the n-th coordinate
and set

f(x1, . . . , xn−1) =
n−1∏
i=1

x2i

(
r2 −

n−1∑
i=1

x2i

)
,

then

fxi
(x1, . . . , xn−1) = 2xi

n−1∏
j=1
j 6=i

x2j

(
r2 −

n−1∑
j=1

x2j − x2i

)
.

Take ~x ∈ Rn−1 such that xj 6= 0 for all j = 1, . . . , n− 1, then adding up all
equations of the linear system∣∣∣∣∣∣∣∣∣

fx1(~x) = 0
fx2(~x) = 0

...
...

...
fxn−1(~x) = 0

∣∣∣∣∣∣∣∣∣
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we obtain

n−1∑
j=1

x2j + (n− 1)
n−1∑
j=1

x2j = n
n−1∑
j=1

x2j = n(r2 − x2n) = (n− 1)r2

hence x2n = r2/n. More generally, fixing the k-th coordinate, you obtain
x2k = r2/n. Therefore, the only non-trivial critical point of x21 · · ·x2n on the
(n− 1)-dimensional sphere of radius r is (r2/n, . . . , r2/n). Part (b) extends
immediately to general n.
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