Mathematical Finance Solutions Sheet 5

Solution 5-1

a) We first show that $u(t, \cdot)$ is increasing in x. Fix some arbitrary $0<x_{1} \leq x_{2}$ and an admissible control process π. We write $Z_{s}=X_{s}^{t, x_{2}}-X_{s}^{t, x_{1}}$. Then the process Z satisfies the SDE

$$
d Z_{s}=Z_{s}\left[r d s+\pi_{s}\left((\mu-r) d s+\sigma d W_{s}\right)\right], \quad Z_{t}=x_{2}-x_{1} \geq 0
$$

Thus $Z_{s} \geq 0$ and $X_{s}^{t, x_{2}} \geq X_{s}^{t, x_{1}}$ for all $s \geq t$. Since U is increasing, we have $U\left(X_{T}^{t, x_{1}}\right) \leq$ $U\left(X_{T}^{t, x_{2}}\right)$ and thus $u\left(t, x_{1}\right) \leq u\left(t, x_{2}\right)$.
To show concavity let $0<x_{1}, x_{2}, \lambda \in[0,1]$ and π_{1}, π_{2} be two admissible control processes. We write $x_{\lambda}=\lambda x_{1}+(1-\lambda) x_{2}$. Also $X^{t, x_{i}}$ is the wealth process starting from x_{i} at time t and controlled by π_{i}, where $i \in\{1,2\}$. Set

$$
\pi_{s}^{\lambda}=\frac{\lambda X_{s}^{t, x_{1}} \pi_{s}^{1}+(1-\lambda) X_{s}^{t, x_{2}} \pi_{s}^{2}}{\lambda X_{s}^{t, x_{1}}+(1-\lambda) X_{s}^{t, x_{2}}}
$$

By convexity of A, the process π^{λ} lies in the admissibility class \mathcal{A}. Moreover from the linear dynamics of the wealth process, we see that $X^{\lambda}=\lambda X^{t, x_{1}}+(1-\lambda) X^{t, x_{2}}$ is governed by

$$
\begin{aligned}
d X_{s}^{\lambda} & =X_{s}^{\lambda}\left[r d s+\pi_{s}^{\lambda}\left((\mu-r) d s+\sigma d W_{s}\right)\right], \quad s \geq t \\
X_{t}^{\lambda} & =x_{\lambda}
\end{aligned}
$$

Therefore by the concavity of the utility function U,

$$
U\left(\lambda X_{T}^{t, x_{1}}+(1-\lambda) X_{T}^{t, x_{2}}\right) \geq \lambda U\left(X_{T}^{t, x_{1}}\right)+(1-\lambda) U\left(X_{T}^{t, x_{2}}\right)
$$

which implies that

$$
u\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geq \lambda U\left(X_{T}^{t, x_{1}}\right)+(1-\lambda) U\left(X_{T}^{t, x_{2}}\right)
$$

Since π^{1} and π^{2} are arbitrary, we conclude that

$$
u\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geq \lambda u\left(x_{1}\right)+(1-\lambda) u\left(x_{2}\right)
$$

b) The dynamic programming principle is given as

$$
u(t, x)=\sup _{\pi \in \mathcal{A}} E\left[u\left(\theta, X_{\theta}^{t, x, \pi}\right) \mid \mathcal{F}_{t}\right]
$$

for $\theta \in[t, T]$ and the dynamic programming equation is

$$
-u_{t}(t, x)-\sup _{\pi \in A}\left\{(x r+\pi(\mu-r) x) u_{x}(t, x)+\frac{1}{2} x^{2} \pi^{2} \sigma^{2} u_{x x}(t, x)\right\}=0
$$

with the boundary condition $u(T, x)=U(x)$.

Solution 5-2

We are looking for a candidate solution of the form

$$
w(t, x)=\phi(t) U(x),
$$

for some positive function $\phi(t)$. Then observing $x U^{\prime}(x)=\gamma U(x)$ and $x^{2} U^{\prime \prime}(x)=\gamma(\gamma-1) U(x)$, we get

$$
\phi^{\prime}(t)+\gamma \sup _{\pi \in A}\left(r+\pi(\mu-r)+\frac{1}{2} \pi^{2} \sigma^{2}(\gamma-1)\right) \phi(t)=0
$$

and $\phi(T)=1$. Then the candidate optimal control $\hat{\pi}$ is

$$
\hat{\pi}=\arg \max _{\pi \in A}\left\{r+\pi(\mu-r)+\frac{1}{2} \pi^{2} \sigma^{2}(\gamma-1)\right\}=\frac{\mu-r}{\sigma^{2}(1-\gamma)}
$$

so that

$$
\underset{\pi \in A}{\gamma \sup _{\pi}}\left(r+\pi(\mu-r)+\frac{1}{2} \pi^{2} \sigma^{2}(\gamma-1)\right)=\frac{(\mu-r)^{2}}{2 \sigma^{2}} \frac{\gamma}{1-\gamma}+r \gamma=: \rho .
$$

Hence $\phi(t)=\exp (\rho(T-t))$ and the candidate solution is $w(t, x)=\exp (\rho(T-t)) U(x)$.

Solution 5-3

Since $w \in C^{1,2}([0, T] \times \mathbb{R})$, we have for all $(t, x) \in[0, T] \times \mathbb{R}, \pi \in \mathcal{A}, s \in[t, T]$ and any stopping time τ valued in $[t, \infty)$, by Ito's formula

$$
\begin{aligned}
w\left(s \wedge \tau, X_{s \wedge \tau}^{t, x}\right) & =w(t, x)+\int_{t}^{s \wedge \tau} w_{x}\left(\tilde{t}, X_{\tilde{t}}^{t, x}\right) X_{\tilde{t}}^{t, x} \pi_{\tilde{t}} \sigma d W_{\tilde{t}} \\
& +\int_{t}^{s \wedge \tau} w_{t}\left(\tilde{t}, X_{\tilde{t}}^{t, x}\right)+\left(r+\pi_{\tilde{t}}(\mu-r)\right) X_{\tilde{t}}^{t, x} w_{x}\left(\tilde{t}, X_{\tilde{t}}^{t, x}\right)+\frac{1}{2} \sigma^{2} \pi_{\tilde{t}}^{2}\left[X_{\tilde{t}}^{t, x}\right]^{2} w_{x x}\left(\tilde{t}, X_{\tilde{t}}^{t, x}\right) d \tilde{t} .
\end{aligned}
$$

We choose

$$
\tau_{n}=\inf \left\{s \geq t: \int_{t}^{s}\left|w_{x}\left(\tilde{t}, X_{\tilde{t}}^{t, x}\right) X_{\tilde{t}}^{t, x} \pi_{\tilde{t}}\right|^{2} d \tilde{t} \geq n\right\}
$$

and observe that $\tau_{n} \uparrow \infty$. The stopped process $\left\{\int_{t}^{s \wedge \tau_{n}} w_{x}\left(\tilde{t}, X_{\tilde{t}}^{t, x}\right) \pi_{\tilde{t}} X_{\tilde{t}}^{t, x} \sigma d W_{\tilde{t}}, \quad t \leq s \leq T\right\}$ is then a martingale and by taking expectations we get

$$
\begin{aligned}
& E\left[w\left(s \wedge \tau_{n}, X_{s \wedge \tau_{n}}^{t, x}\right)\right] \\
& \quad=w(t, x)+E\left[\int_{t}^{s \wedge \tau} w_{t}\left(\tilde{t}, X_{\tilde{t}}^{t, x}\right)+\left(r+\pi_{\tilde{t}}(\mu-r)\right) X_{\tilde{t}}^{t, x} w_{x}\left(\tilde{t}, X_{\tilde{t}}^{t, x}\right)+\frac{1}{2} \sigma^{2} \pi_{\tilde{t}}^{2}\left[X_{\tilde{t}}^{t, x}\right]^{2} w_{x x}\left(\tilde{t}, X_{\tilde{t}}^{t, x}\right) d \tilde{t}\right]
\end{aligned}
$$

Since w satisfies the HJB equation, we have for all $\pi \in \mathcal{A}$ that

$$
\int_{t}^{s \wedge \tau} w_{t}\left(\tilde{t}, X_{\tilde{t}}^{t, x}\right)+\left(r+\pi_{\tilde{t}}(\mu-r)\right) X_{\tilde{t}}^{t, x} w_{x}\left(\tilde{t}, X_{\tilde{t}}^{t, x}\right)+\frac{1}{2} \sigma^{2} \pi_{\tilde{t}}^{2}\left[X_{\tilde{t}}^{t, x}\right]^{2} w_{x x}\left(\tilde{t}, X_{\tilde{t}}^{t, x}\right) d \tilde{t} \leq 0
$$

and so

$$
E\left[w\left(s \wedge \tau_{n}, X_{s \wedge \tau_{n}}^{t, x}\right)\right] \leq w(t, x) .
$$

Observe that for all $t \in[0, T]$,

$$
|w(t, x)|=\left|\exp (\rho(T-t)) \frac{x^{\gamma}}{\gamma}\right| \leq \frac{\exp (\rho T)}{\gamma}(1+x)^{\gamma} \leq \frac{\exp (\rho T)}{\gamma}(1+x)^{2} \leq 2 \frac{\exp (\rho T)}{\gamma}\left(1+x^{2}\right),
$$

since $\gamma<1$. Therefore,

$$
\left|w\left(s \wedge \tau_{n}, X_{s \wedge \tau_{n}}\right)\right| \leq C\left(1+\sup _{s \in[t, T]}\left|X_{s}^{t, x}\right|^{2}\right)
$$

By assumption, the right-hand-side term is integrable. By applying the dominated convergence theorem, as $n \rightarrow \infty$ we obtain

$$
E\left[w\left(s, X_{s}^{t, x}\right)\right] \leq w(t, x)
$$

By continuity of w on $[0, T] \times \mathbb{R}$, by sending s to T, we obtain by dominated convergence theorem that

$$
E\left[U\left(X_{T}^{t, x}\right)\right] \leq w(t, x)
$$

for any $\pi \in \mathcal{A}$ so that $u(t, x) \leq w(t, x)$.
To have the converse inequality, we apply Ito to w, but this time we use the candidate optimal control $\hat{\pi}$. Since

$$
\begin{aligned}
& -w_{t}(t, x)-\sup _{\pi \in A}\left\{(x r+\pi(\mu-r) x) w_{x}(t, x)+\frac{1}{2} x^{2} \pi^{2} \sigma^{2} w_{x x}(t, x)\right\} \\
& =-w_{t}(t, x)-(x r+\hat{\pi}(\mu-r) x) w_{x}(t, x)-\frac{1}{2} x^{2} \hat{\pi}^{2} \sigma^{2} w_{x x}(t, x)=0
\end{aligned}
$$

following the same steps as above we obtain

$$
w(t, x)=E\left[w\left(s, \hat{X}_{s}^{t, x}\right)\right] \leq u(t, x)
$$

where \hat{X} represents the solution of the SDE

$$
d \hat{X}_{s}=\hat{X}_{s}\left(r d s+\hat{\pi}_{s}\left((\mu-r) d s+\sigma d W_{s}\right)\right)
$$

with the control $\hat{\pi}$. Thus $w(t, x)=u(t, x)=E\left[w\left(s, \hat{X}_{s}^{t, x}\right)\right]$. We conclude that w is the value function u and $\hat{\pi}$ is the optimal control.

