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Solution 7-1

a) Since the interest rate is zero, η0 = ϕ0. So, from the self-financing condition, we get

η0t = −Stdϕbt + (1− λ)Stdϕ
s
t , t ∈ [0, T ].

Similarly, plugging in the dynamics of S, we get

dηt = µηtdt+ σηtdWt + Stdϕ
b − Stdϕst .

b) We assume that the value function depends on time t, the current value of safe position x
and the current value of risky position y, u = u(t, x, y). By, Ito’s Formula,

du(t, η0t , ηt) = utdt + uxdη
0
t + uydηt +

1

2
uyyd〈η, η〉

= (ut + µηtuy +
1

2
σ2η2uyy)dt+ St(uy − ux)dϕb + St((1− λ)ux − uy)dϕst + σηtuydWt.

By the martingale optimality principle, u(t, η0t , ηt) must be a supermartingale for any η ∈ A
and a martingale for the optimal η̂. So, it follows that uy−ux ≤ 0 and (1−λ)ux−uy ≤ 0,
i.e.,

1 ≤ ux
uy
≤ 1

1− λ
,

and for η̂, the drift must vanish in the interior of this region. We get

ut + µηtuy +
1

2
σ2η2t uyy = 0 on 1 <

ux
uy

<
1

1− λ
.

Solution 7-2

As in the frictionless case (Exercise 6-2), by the scaling property of exponential utility, we may
rewrite

u(t, x, y) = e−αxu(t, 0, y).

In the frictionless case, the corresponding equivalent annuity is

lim inf
T→∞

− 1

αT
logE[e−αX

φ
T ] =

µ2

2ασ2
,

so, we expect similar behavior in the present setting:

u(t, η0t , η) = −e−αη0t e−βη0t φ(ηt). (1)



Plugging (1) in HJB, we get

1

2
σ2y2φ′′(y) + µyφ′(y)αβφ(y) = 0 on 1 <

−αφ(y)

φ′(y)
<

1

1− λ
. (2)

Denote ]l,m[:= {y ∈ R : 1 < −αφ(y)
φ′(y) < 1

1−λ}. We then have a free boundary problem:

1

2
σ2y2φ′′(y) + µyφ′(y)αβφ(y) = 0 on 1 <

−αφ(y)

φ(y)
<

1

1− λ
,

φ′(l) + αφ′(l) = 0,

1

1− λ
φ(m) + αφ′(m).

The optimal boundaries are given by the smooth pasting condition:

φ′′(l) + αφ′(l) = 0,

1

1− λ
φ′(m) + αφ′′(m).

We get

−1

2
ασ2η2α− + µη2α− − β = 0,

where ηα− := l. Similar argument for m shows that the other solution of quadratic equation is
ηα+ := (1− λ)m. Since they solve the same quadratic equation, they are related via

µα± =
µ

ασ
± 1

α

√
µ2/σ4 − 2β/(ασ2).

Solution 7-3

Plugging in our candidate solution, we get

S̃t =
w(log(ηt/ηα−))

αηt
St.

Let Yt := log(ηt/ηα−). The process Y is a reflected Brownian motion on the interval [0, log( 1
1−λ

ηα+
ηα−

)].

Indeed, in the interior of the interval, the dynamics Y coincide with those of Brownian motion,
and since Y must stay in the interval, we have

dYt = (µ− 1

2
σ2)dt+ σdWt + dLt − dUt,

where L and U are non-decreasing local time processes, increasing only on {Yt = 0} and {Yt =
log( 1

1−λ
ηα+
ηα−

)} respectively. The initial state is, by the definition of no-trade region, Y0 = 0 if

xS0 ≤ ηα−, Y0 = log( 1
1−λ

ηα+
ηα−

) if xS0 ≥ 1
1−ληα+, and Y0 = log( xS0

ηα−
) otherwise. Since Y =

log(η/ηα−), we have S̃ = w(Y )
αηα−eY

, which fixes the initial value of S̃. By Ito formula,

d(St/αηα−e
Y )

St/αηα−eY
= −d(Lt − Ut)

and

dw(Yt)

w(Yt)
=
(w′(Yt)
w(Yt)

(µ− 1

2
σ2) +

1

2
σ2
w′′(Yt)

w(Yt)

)
dt+

w′(Yt)

w(Yt)
σdWt +

w′(Yt)

w(Yt)
d(Lt − Ut).



Differentiating ODE for w (w′′ − w′ = 2w′(w − µ
σ2 )), the above expression reduces to

dw(Yt)

w(Yt)
= σ2w′(log(ηt/ηα−))dt+ σ

w′(ηt/ηα−)

w(ηt/ηα−)
dWt + d(Lt − Ut)

and the assertion now follows by the integration by parts. Since (w′ − w)′ is non-positive for
w ≤ µ

σ2 and positive for w > µ
σ2 and w = w′ on the boundaries, we have that the derivative of

w(y)/ey, that is (w′(y)−w(y))/ey, is non-positive, so w(y)/ey is monotonic. Since w(0) = αηα−
and w(log( 1

1−λ
ηα+
ηα−

)) = αηα+, the process S̃ = w(Y )
αηα−eY

stays in the bid-ask spread [(1− λ)S, S].

Solution 7-4

The density of an equivalent local martingale measure Q̃ for S̃ is

ZT = exp(−
∫ T

0
σwdWt −

1

2

∫ T

0
σ2w2dt).

Since σw
′(ηt/ηα−)
w(ηt/ηα−)

is uniformly bounded and (1 − S) ≤ S̃ ≤ S, the local Q̃-martingale X̃ϕ
t =

X̃ϕ
0 +

∫ t
0 ϕtdS̃t, is a true martingale for every admissible ϕ. As in the frictionless case (Exercise

6-3), by the Jensen’s inequality and martingale property, we have

E[e−αX̃
ϕ
T ] = E

Q̃
[e−αX̃

ϕ
T−log(ZT )] ≥ e−αEQ̃[X̃ϕ

T ]−EQ̃[log(ZT )] ≥ e−αX̃
ϕ
0 −EQ̃[log(ZT )],

which yields an upper bound for equivalent annuities

lim inf
T→∞

−1

αT
log(E[e−αX̃

ϕ
T ]) ≤ lim inf

T→∞

1

T
(X̃ϕ

0 +
1

α
E
Q̃

[log(ZT )]). (3)

On the other hand, for η̂, and respective wealth process,

X̂t = (x+ xS̃0) +

∫ t

0
η̂σ2w′(log(ηt/ηα−))dt+

∫ t

0
η̂σ
w′(ηt/ηα−)

w(ηt/ηα−)
dWt,

we have

e−αX̂T = e−αX̂0 exp(−
∫ T

0
η̂σ2w′(log(ηt/ηα−))dt+

∫ T

0
η̂σ
w′(ηt/ηα−)

w(ηt/ηα−)
dWt)

= e−αX̂0 exp(−
∫ T

0
σ2ww′dWt −

1

2

∫ T

0
σw′dt) = · · ·

(4)

by the dynamics of w(log(η/ηα−)), we have∫ log(ηT /ηα−)

log(η0/ηα−)
(w(z)− w′(z))dz =

∫ T

0

(
(µ− 1

2
σ2) + (w − w′)1

2
σ2(w′ − w′′)

)
dt+

∫ T

0
σ(w − w′)dWt

=

∫ T

0

(
(µ− 1

2
σ2)w +

1

2
σ2w′ − σ2ww′

)
dt+

∫ T

0
σ(w − w′)dWt

so, (4) is equal to

· · · = e−αX̂0 exp(

∫ log(ηT /ηα−)

log(η0/ηα−)
(w(z)− w′(z))dz +

1

2
σ2
∫ T

0
(−w′ − (2

µ

σ2
− 1)w)dt−

∫ T

0
σwdWt)

= e−αX̂0e−αβTZT exp(

∫ log(ηT /ηα−)

log(η0/ηα−)
(w(z)− w′(z))dz)



Taking expectations, we get

E[e−αX̂T ] = e−αX̂0e−αβTE
Q̃

[exp(

∫ log(ηT /ηα−)

log(η0/ηα−)
(w(z)− w′(z))dz)] := e−αX̂0e−αβTE

Q̃
[exp(NT )],

and since NT , 0 < T <∞, is uniformly bounded, we have

lim inf
T→∞

−1

αT
log(E[e−αX̂

ϕ
T ]) = lim inf

T→∞

−1

αT
(−αX̂0 − αβT + log(E

Q̃
[exp(NT )])) = β

in (3). On the other hand, by the Girsanov’s theorem,

e−αX̂0−EQ̃[logZT ] = exp(−αX̂0 + E
Q̃

[

∫ T

0
σwdW̃t −

1

2

∫ T

0
σ2w2dt]) = · · ·

where W̃t = Wt +
∫ t
0 σwds denotes a Q̃-Brownian motion, and similarly as in (4), we get

· · · = e−αX̂0e−αβT exp(E
Q̃

[

∫ log(ηT /ηα−)

log(η0/ηα−)
(w(z)− w′(z))dz −

∫ T

0
σ(w − w′)dW̃t])

= e−αX̂0e−αβT exp(E
Q̃

[

∫ log(ηT /ηα−)

log(η0/ηα−)
(w(z)− w′(z))dz]) = e−αX̂0e−αβT exp(E

Q̃
[NT ]).

So,

lim inf
T→∞

1

T
(X̃ϕ

0 +
1

α
E
Q̃

[log(ZT )]) = lim inf
T→∞

1

T
(X̂0 +

1

α
E
Q̃

[log(ZT )])

= lim inf
T→∞

1

T
(βT − 1

α
E
Q̃

[NT ]) = β.

In the view of (3), η̂ is long-term optimal.

Solution 7-5

By the definition, we have ϕ̂0
t = X̂t − η̂, t ≥ 0, ϕ̂0

0− = x, and ϕ̂t = η̂t/S̃t, t ≥ 0, ϕ̂0− = y. As

ϕ̂ only increases (resp. decreases) when S̃ = S (resp. S̃ = (1 − λ)S), the strategy (ϕ̂0, ϕ̂) is

self-financing, and since (1 − λ)S ≤ S̃ ≤ S, it is bounded as well, so ϕ̂ ∈ A. Moreover, since

S ≥ S̃ ≥ (1− λ)S and 0 < ϕ̂ < ηα−/S, we have

ϕ̂0 + ϕ̂S̃ ≥ ϕ̂+ ϕ̂+(1− λ)S − ϕ̂−S ≥ ϕ̂0 + ϕ̂S̃ − ληα−,

which yields

lim inf
T→∞

−1

αT
log(E[e−α(ϕ̂

0
T+ϕ̂

+
T (1−λ)ST−ϕ̂

−ST )]) = lim inf
T→∞

−1

αT
log(E[e−α(ϕ̂

0
T+ϕ̂S̃T )]).

Now let (ϕ0, ϕ) be any admissible strategy for the original problem. Set ϕ̃0
t = ϕ0

0− −
∫ t
0 S̃tdϕt.

Then (ϕ0, ϕ) is a self-financing strategy for S̃ with ϕ̃0 ≥ ϕ0. We have

lim inf
T→∞

−1

αT
log(E[e−α(ϕ

0
T+ϕ

+
T (1−λ)ST )−ϕ

−ST )]) ≤ lim inf
T→∞

−1

αT
log(E[e−α(ϕ̃

0
T+ϕT S̃T )])

≤ lim inf
T→∞

−1

αT
log(E[e−α(ϕ̂

0
T+ϕ̂T S̃T )])

= lim inf
T→∞

−1

αT
log(E[e−α(ϕ̂

0
T+ϕ̂

+
T (1−λ)ST )−ϕ̂

−ST )]).

We conclude that the strategy η̂ is long-term optimal with the equivalent annuity β.

Exercise sheets and further information are also available on:

http://www.math.ethz.ch/education/bachelor/lectures/hs2015/math/mf/


