Mathematical Finance Solutions Sheet 7

Solution 7-1

a) Since the interest rate is zero, $\eta^{0}=\varphi^{0}$. So, from the self-financing condition, we get

$$
\eta_{t}^{0}=-S_{t} d \varphi_{t}^{b}+(1-\lambda) S_{t} d \varphi_{t}^{s}, t \in[0, T]
$$

Similarly, plugging in the dynamics of S, we get

$$
d \eta_{t}=\mu \eta_{t} d t+\sigma \eta_{t} d W_{t}+S_{t} d \varphi^{b}-S_{t} d \varphi_{t}^{s}
$$

b) We assume that the value function depends on time t, the current value of safe position x and the current value of risky position $y, u=u(t, x, y)$. By, Ito's Formula,

$$
\begin{aligned}
d u\left(t, \eta_{t}^{0}, \eta_{t}\right) & =u_{t} d_{t}+u_{x} d \eta_{t}^{0}+u_{y} d \eta_{t}+\frac{1}{2} u_{y y} d\langle\eta, \eta\rangle \\
& =\left(u_{t}+\mu \eta_{t} u_{y}+\frac{1}{2} \sigma^{2} \eta^{2} u_{y y}\right) d t+S_{t}\left(u_{y}-u_{x}\right) d \varphi^{b}+S_{t}\left((1-\lambda) u_{x}-u_{y}\right) d \varphi_{t}^{s}+\sigma \eta_{t} u_{y} d W_{t}
\end{aligned}
$$

By the martingale optimality principle, $u\left(t, \eta_{t}^{0}, \eta_{t}\right)$ must be a supermartingale for any $\eta \in \mathcal{A}$ and a martingale for the optimal $\widehat{\eta}$. So, it follows that $u_{y}-u_{x} \leq 0$ and $(1-\lambda) u_{x}-u_{y} \leq 0$, i.e.,

$$
1 \leq \frac{u_{x}}{u_{y}} \leq \frac{1}{1-\lambda}
$$

and for $\widehat{\eta}$, the drift must vanish in the interior of this region. We get

$$
u_{t}+\mu \eta_{t} u_{y}+\frac{1}{2} \sigma^{2} \eta_{t}^{2} u_{y y}=0 \text { on } 1<\frac{u_{x}}{u_{y}}<\frac{1}{1-\lambda}
$$

Solution 7-2

As in the frictionless case (Exercise 6-2), by the scaling property of exponential utility, we may rewrite

$$
u(t, x, y)=e^{-\alpha x} u(t, 0, y)
$$

In the frictionless case, the corresponding equivalent annuity is

$$
\liminf _{T \rightarrow \infty}-\frac{1}{\alpha T} \log E\left[e^{-\alpha X_{T}^{\phi}}\right]=\frac{\mu^{2}}{2 \alpha \sigma^{2}}
$$

so, we expect similar behavior in the present setting:

$$
\begin{equation*}
u\left(t, \eta_{t}^{0}, \eta\right)=-e^{-\alpha \eta_{t}^{0}} e^{-\beta \eta_{t}^{0}} \phi\left(\eta_{t}\right) \tag{1}
\end{equation*}
$$

Plugging (1) in HJB, we get

$$
\begin{equation*}
\frac{1}{2} \sigma^{2} y^{2} \phi^{\prime \prime}(y)+\mu y \phi^{\prime}(y) \alpha \beta \phi(y)=0 \text { on } 1<\frac{-\alpha \phi(y)}{\phi^{\prime}(y)}<\frac{1}{1-\lambda} . \tag{2}
\end{equation*}
$$

Denote $] l$, $m\left[:=\left\{y \in \mathbb{R}: 1<\frac{-\alpha \phi(y)}{\phi^{\prime}(y)}<\frac{1}{1-\lambda}\right\}\right.$. We then have a free boundary problem:

$$
\begin{aligned}
& \frac{1}{2} \sigma^{2} y^{2} \phi^{\prime \prime}(y)+\mu y \phi^{\prime}(y) \alpha \beta \phi(y)=0 \text { on } 1<\frac{-\alpha \phi(y)}{\phi(y)}<\frac{1}{1-\lambda}, \\
& \phi^{\prime}(l)+\alpha \phi^{\prime}(l)=0, \\
& \frac{1}{1-\lambda} \phi(m)+\alpha \phi^{\prime}(m) .
\end{aligned}
$$

The optimal boundaries are given by the smooth pasting condition:

$$
\begin{aligned}
& \phi^{\prime \prime}(l)+\alpha \phi^{\prime}(l)=0, \\
& \frac{1}{1-\lambda} \phi^{\prime}(m)+\alpha \phi^{\prime \prime}(m) .
\end{aligned}
$$

We get

$$
-\frac{1}{2} \alpha \sigma^{2} \eta_{\alpha-}^{2}+\mu \eta_{\alpha-}^{2}-\beta=0
$$

where $\eta_{\alpha-}:=l$. Similar argument for m shows that the other solution of quadratic equation is $\eta_{\alpha+}:=(1-\lambda) m$. Since they solve the same quadratic equation, they are related via

$$
\mu_{\alpha \pm}=\frac{\mu}{\alpha \sigma} \pm \frac{1}{\alpha} \sqrt{\mu^{2} / \sigma^{4}-2 \beta /\left(\alpha \sigma^{2}\right)}
$$

Solution 7-3

Plugging in our candidate solution, we get

$$
\widetilde{S}_{t}=\frac{w\left(\log \left(\eta_{t} / \eta_{\alpha-}\right)\right)}{\alpha \eta_{t}} S_{t} .
$$

Let $Y_{t}:=\log \left(\eta_{t} / \eta_{\alpha-}\right)$. The process Y is a reflected Brownian motion on the interval $\left[0, \log \left(\frac{1}{1-\lambda} \frac{\eta_{\alpha+}}{\eta_{\alpha-}}\right)\right]$. Indeed, in the interior of the interval, the dynamics Y coincide with those of Brownian motion, and since Y must stay in the interval, we have

$$
d Y_{t}=\left(\mu-\frac{1}{2} \sigma^{2}\right) d t+\sigma d W_{t}+d L_{t}-d U_{t}
$$

where L and U are non-decreasing local time processes, increasing only on $\left\{Y_{t}=0\right\}$ and $\left\{Y_{t}=\right.$ $\left.\log \left(\frac{1}{1-\lambda} \frac{\eta_{\alpha+}}{\eta_{\alpha-}}\right)\right\}$ respectively. The initial state is, by the definition of no-trade region, $Y_{0}=0$ if $x S_{0} \leq \eta_{\alpha-}, Y_{0}=\log \left(\frac{1}{1-\lambda} \frac{\eta_{\alpha+}}{\eta_{\alpha-}}\right)$ if $x S_{0} \geq \frac{1}{1-\lambda} \eta_{\alpha+}$, and $Y_{0}=\log \left(\frac{x S_{0}}{\eta_{\alpha-}}\right)$ otherwise. Since $Y=$ $\log \left(\eta / \eta_{\alpha-}\right)$, we have $\widetilde{S}=\frac{w(Y)}{\alpha \eta_{\alpha-} e^{Y}}$, which fixes the initial value of \widetilde{S}. By Ito formula,

$$
\frac{d\left(S_{t} / \alpha \eta_{\alpha-} e^{Y}\right)}{S_{t} / \alpha \eta_{\alpha-} e^{Y}}=-d\left(L_{t}-U_{t}\right)
$$

and

$$
\frac{d w\left(Y_{t}\right)}{w\left(Y_{t}\right)}=\left(\frac{w^{\prime}\left(Y_{t}\right)}{w\left(Y_{t}\right)}\left(\mu-\frac{1}{2} \sigma^{2}\right)+\frac{1}{2} \sigma^{2} \frac{w^{\prime \prime}\left(Y_{t}\right)}{w\left(Y_{t}\right)}\right) d t+\frac{w^{\prime}\left(Y_{t}\right)}{w\left(Y_{t}\right)} \sigma d W_{t}+\frac{w^{\prime}\left(Y_{t}\right)}{w\left(Y_{t}\right)} d\left(L_{t}-U_{t}\right)
$$

Differentiating ODE for $w\left(w^{\prime \prime}-w^{\prime}=2 w^{\prime}\left(w-\frac{\mu}{\sigma^{2}}\right)\right)$, the above expression reduces to

$$
\frac{d w\left(Y_{t}\right)}{w\left(Y_{t}\right)}=\sigma^{2} w^{\prime}\left(\log \left(\eta_{t} / \eta_{\alpha-}\right)\right) d t+\sigma \frac{w^{\prime}\left(\eta_{t} / \eta_{\alpha-}\right)}{w\left(\eta_{t} / \eta_{\alpha-}\right)} d W_{t}+d\left(L_{t}-U_{t}\right)
$$

and the assertion now follows by the integration by parts. Since $\left(w^{\prime}-w\right)^{\prime}$ is non-positive for $w \leq \frac{\mu}{\sigma^{2}}$ and positive for $w>\frac{\mu}{\sigma^{2}}$ and $w=w^{\prime}$ on the boundaries, we have that the derivative of $w(y) / e^{y}$, that is $\left(w^{\prime}(y)-w(y)\right) / e^{y}$, is non-positive, so $w(y) / e^{y}$ is monotonic. Since $w(0)=\alpha \eta_{\alpha-}$ and $w\left(\log \left(\frac{1}{1-\lambda} \frac{\eta_{\alpha+}}{\eta_{\alpha-}}\right)\right)=\alpha \eta_{\alpha+}$, the process $\widetilde{S}=\frac{w(Y)}{\alpha \eta_{\alpha-} e^{Y}}$ stays in the bid-ask spread $[(1-\lambda) S, S]$.

Solution 7-4

The density of an equivalent local martingale measure \widetilde{Q} for \widetilde{S} is

$$
Z_{T}=\exp \left(-\int_{0}^{T} \sigma w d W_{t}-\frac{1}{2} \int_{0}^{T} \sigma^{2} w^{2} d t\right)
$$

Since $\sigma \frac{w^{\prime}\left(\eta_{t} / \eta_{\alpha-}\right)}{w\left(\eta_{t} / \eta_{\alpha-}\right)}$ is uniformly bounded and $(1-S) \leq \widetilde{S} \leq S$, the local \widetilde{Q}-martingale $\widetilde{X}_{t}^{\varphi}=$ $\widetilde{X}_{0}^{\varphi}+\int_{0}^{t} \varphi_{t} d \widetilde{S}_{t}$, is a true martingale for every admissible φ. As in the frictionless case (Exercise $6-3$), by the Jensen's inequality and martingale property, we have

$$
E\left[e^{-\alpha \tilde{X}_{T}^{\varphi}}\right]=E_{\widetilde{Q}}\left[e^{-\alpha \tilde{X}_{T}^{\varphi}-\log \left(Z_{T}\right)}\right] \geq e^{-\alpha E_{\widetilde{Q}}\left[\widetilde{X}_{X}^{\varphi}\right]-E_{\widetilde{Q}}\left[\log \left(Z_{T}\right)\right]} \geq e^{-\alpha \widetilde{X}_{0}^{\varphi}-E_{\widetilde{Q}}\left[\log \left(Z_{T}\right)\right]}
$$

which yields an upper bound for equivalent annuities

$$
\begin{equation*}
\liminf _{T \rightarrow \infty} \frac{-1}{\alpha T} \log \left(E\left[e^{\left.-\alpha \widetilde{X}_{T}^{\varphi}\right]}\right) \leq \liminf _{T \rightarrow \infty} \frac{1}{T}\left(\widetilde{X}_{0}^{\varphi}+\frac{1}{\alpha} E_{\widetilde{Q}}\left[\log \left(Z_{T}\right)\right]\right) .\right. \tag{3}
\end{equation*}
$$

On the other hand, for $\hat{\eta}$, and respective wealth process,

$$
\widehat{X}_{t}=\left(x+x \widetilde{S}_{0}\right)+\int_{0}^{t} \widehat{\eta} \sigma^{2} w^{\prime}\left(\log \left(\eta_{t} / \eta_{\alpha-}\right)\right) d t+\int_{0}^{t} \widehat{\eta} \sigma \frac{w^{\prime}\left(\eta_{t} / \eta_{\alpha-}\right)}{w\left(\eta_{t} / \eta_{\alpha-}\right)} d W_{t}
$$

we have

$$
\begin{align*}
e^{-\alpha \widehat{X}_{T}} & =e^{-\alpha \widehat{X}_{0}} \exp \left(-\int_{0}^{T} \widehat{\eta} \sigma^{2} w^{\prime}\left(\log \left(\eta_{t} / \eta_{\alpha-}\right)\right) d t+\int_{0}^{T} \widehat{\eta} \sigma \frac{w^{\prime}\left(\eta_{t} / \eta_{\alpha-}\right)}{w\left(\eta_{t} / \eta_{\alpha-}\right)} d W_{t}\right) \\
& =e^{-\alpha \widehat{X}_{0}} \exp \left(-\int_{0}^{T} \sigma^{2} w w^{\prime} d W_{t}-\frac{1}{2} \int_{0}^{T} \sigma w^{\prime} d t\right)=\cdots \tag{4}
\end{align*}
$$

by the dynamics of $w\left(\log \left(\eta / \eta_{\alpha-}\right)\right)$, we have

$$
\begin{aligned}
\int_{\log \left(\eta_{0} / \eta_{\alpha-}\right)}^{\log \left(\eta_{T} / \eta_{\alpha-}\right)}\left(w(z)-w^{\prime}(z)\right) d z & =\int_{0}^{T}\left(\left(\mu-\frac{1}{2} \sigma^{2}\right)+\left(w-w^{\prime}\right) \frac{1}{2} \sigma^{2}\left(w^{\prime}-w^{\prime \prime}\right)\right) d t+\int_{0}^{T} \sigma\left(w-w^{\prime}\right) d W_{t} \\
& =\int_{0}^{T}\left(\left(\mu-\frac{1}{2} \sigma^{2}\right) w+\frac{1}{2} \sigma^{2} w^{\prime}-\sigma^{2} w w^{\prime}\right) d t+\int_{0}^{T} \sigma\left(w-w^{\prime}\right) d W_{t}
\end{aligned}
$$

so, (4) is equal to

$$
\begin{aligned}
\cdots & =e^{-\alpha \widehat{X}_{0}} \exp \left(\int_{\log \left(\eta_{0} / \eta_{\alpha-}\right)}^{\log \left(\eta_{T} / \eta_{\alpha-}\right)}\left(w(z)-w^{\prime}(z)\right) d z+\frac{1}{2} \sigma^{2} \int_{0}^{T}\left(-w^{\prime}-\left(2 \frac{\mu}{\sigma^{2}}-1\right) w\right) d t-\int_{0}^{T} \sigma w d W_{t}\right) \\
& =e^{-\alpha \widehat{X}_{0}} e^{-\alpha \beta T} Z_{T} \exp \left(\int_{\log \left(\eta_{0} / \eta_{\alpha-}\right)}^{\log \left(\eta_{T} / \eta_{\alpha-}\right)}\left(w(z)-w^{\prime}(z)\right) d z\right)
\end{aligned}
$$

Taking expectations, we get

$$
E\left[e^{-\alpha \widehat{X}_{T}}\right]=e^{-\alpha \widehat{X}_{0}} e^{-\alpha \beta T} E_{\widetilde{Q}}\left[\exp \left(\int_{\log \left(\eta_{0} / \eta_{\alpha-}\right)}^{\log \left(\eta_{T} / \eta_{\alpha-}\right)}\left(w(z)-w^{\prime}(z)\right) d z\right)\right]:=e^{-\alpha \widehat{X}_{0}} e^{-\alpha \beta T} E_{\widetilde{Q}}\left[\exp \left(N_{T}\right)\right]
$$

and since $N_{T}, 0<T<\infty$, is uniformly bounded, we have

$$
\liminf _{T \rightarrow \infty} \frac{-1}{\alpha T} \log \left(E\left[e^{-\alpha \widehat{X}_{T}^{\varphi}}\right]\right)=\liminf _{T \rightarrow \infty} \frac{-1}{\alpha T}\left(-\alpha \widehat{X}_{0}-\alpha \beta T+\log \left(E_{\widetilde{Q}}\left[\exp \left(N_{T}\right)\right]\right)\right)=\beta
$$

in (3). On the other hand, by the Girsanov's theorem,

$$
e^{-\alpha \widehat{X}_{0}-E_{\widetilde{Q}}\left[\log Z_{T}\right]}=\exp \left(-\alpha \widehat{X}_{0}+E_{\widetilde{Q}}\left[\int_{0}^{T} \sigma w d \widetilde{W}_{t}-\frac{1}{2} \int_{0}^{T} \sigma^{2} w^{2} d t\right]\right)=\cdots
$$

where $\widetilde{W}_{t}=W_{t}+\int_{0}^{t} \sigma w d s$ denotes a \widetilde{Q}-Brownian motion, and similarly as in (4), we get

$$
\begin{aligned}
\cdots & =e^{-\alpha \widehat{X}_{0}} e^{-\alpha \beta T} \exp \left(E_{\widetilde{Q}}\left[\int_{\log \left(\eta_{0} / \eta_{\alpha-}\right)}^{\log \left(\eta_{T} / \eta_{\alpha-}\right)}\left(w(z)-w^{\prime}(z)\right) d z-\int_{0}^{T} \sigma\left(w-w^{\prime}\right) d \widetilde{W}_{t}\right]\right) \\
& =e^{-\alpha \widehat{X}_{0}} e^{-\alpha \beta T} \exp \left(E_{\widetilde{Q}}\left[\int_{\log \left(\eta_{0} / \eta_{\alpha-}\right)}^{\log \left(\eta_{T} / \eta_{\alpha-}\right)}\left(w(z)-w^{\prime}(z)\right) d z\right]\right)=e^{-\alpha \widehat{X}_{0}} e^{-\alpha \beta T} \exp \left(E_{\widetilde{Q}}\left[N_{T}\right]\right) .
\end{aligned}
$$

So,

$$
\begin{aligned}
\liminf _{T \rightarrow \infty} \frac{1}{T}\left(\widetilde{X}_{0}^{\varphi}+\frac{1}{\alpha} E_{\widetilde{Q}}\left[\log \left(Z_{T}\right)\right]\right) & =\liminf _{T \rightarrow \infty} \frac{1}{T}\left(\widehat{X}_{0}+\frac{1}{\alpha} E_{\widetilde{Q}}\left[\log \left(Z_{T}\right)\right]\right) \\
& =\liminf _{T \rightarrow \infty} \frac{1}{T}\left(\beta T-\frac{1}{\alpha} E_{\widetilde{Q}}\left[N_{T}\right]\right)=\beta
\end{aligned}
$$

In the view of $(3), \widehat{\eta}$ is long-term optimal.

Solution 7-5

By the definition, we have $\widehat{\varphi}_{t}^{0}=\widehat{X}_{t}-\widehat{\eta}, t \geq 0, \widehat{\varphi}_{0-}^{0}=x$, and $\widehat{\varphi}_{t}=\widehat{\eta}_{t} / \widetilde{S}_{t}, t \geq 0, \widehat{\varphi}_{0-}=y$. As $\widehat{\varphi}$ only increases (resp. decreases) when $\widetilde{S}=S$ (resp. $\widetilde{S}=(1-\lambda) S$), the strategy $\left(\widehat{\varphi}^{0}, \widehat{\varphi}\right)$ is self-financing, and since $(1-\lambda) S \leq \widetilde{S} \leq S$, it is bounded as well, so $\widehat{\varphi} \in \mathcal{A}$. Moreover, since $S \geq \widetilde{S} \geq(1-\lambda) S$ and $0<\widehat{\varphi}<\eta_{\alpha-} / S$, we have

$$
\widehat{\varphi}^{0}+\widehat{\varphi} \widetilde{S} \geq \widehat{\varphi}+\widehat{\varphi}^{+}(1-\lambda) S-\widehat{\varphi}^{-} S \geq \widehat{\varphi}^{0}+\widehat{\varphi} \widetilde{S}-\lambda \eta_{\alpha-}
$$

which yields

$$
\liminf _{T \rightarrow \infty} \frac{-1}{\alpha T} \log \left(E\left[e^{-\alpha\left(\widehat{\varphi}_{T}^{0}+\widehat{\varphi}_{T}^{+}(1-\lambda) S_{T}-\widehat{\varphi}^{-} S_{T}\right)}\right]\right)=\liminf _{T \rightarrow \infty} \frac{-1}{\alpha T} \log \left(E\left[e^{-\alpha\left(\widehat{\varphi}_{T}^{0}+\widehat{\varphi}_{T}\right)}\right]\right)
$$

Now let $\left(\varphi^{0}, \varphi\right)$ be any admissible strategy for the original problem. Set $\widetilde{\varphi}_{t}^{0}=\varphi_{0-}^{0}-\int_{0}^{t} \widetilde{S}_{t} d \varphi_{t}$. Then $\left(\varphi^{0}, \varphi\right)$ is a self-financing strategy for \widetilde{S} with $\widetilde{\varphi}^{0} \geq \varphi^{0}$. We have

$$
\begin{aligned}
\liminf _{T \rightarrow \infty} \frac{-1}{\alpha T} \log \left(E\left[e^{\left.-\alpha\left(\varphi_{T}^{0}+\varphi_{T}^{+}(1-\lambda) S_{T}\right)-\varphi^{-} S_{T}\right)}\right]\right) & \leq \liminf _{T \rightarrow \infty} \frac{-1}{\alpha T} \log \left(E\left[e^{-\alpha\left(\widetilde{\varphi}_{T}^{0}+\varphi_{T} \widetilde{S}_{T}\right)}\right]\right) \\
& \leq \liminf _{T \rightarrow \infty} \frac{-1}{\alpha T} \log \left(E\left[e^{-\alpha\left(\widehat{\varphi}_{T}^{0}+\widehat{\varphi}_{T} \widetilde{S}_{T}\right)}\right]\right) \\
& =\liminf _{T \rightarrow \infty} \frac{-1}{\alpha T} \log \left(E\left[e^{\left.-\alpha\left(\widehat{\varphi}_{T}^{0}+\widehat{\varphi}_{T}^{+}(1-\lambda) S_{T}\right)-\widehat{\varphi}^{-} S_{T}\right)}\right]\right)
\end{aligned}
$$

We conclude that the strategy $\widehat{\eta}$ is long-term optimal with the equivalent annuity β.
Exercise sheets and further information are also available on:
http://www.math.ethz.ch/education/bachelor/lectures/hs2015/math/mf/

