Mathematical Finance Exercise Sheet 3

Please hand in until Friday, 23.10.2015, 12:00.

Exercise 3-1

Consider a multidimensional Ito process model with finite time horizon $T<\infty$, where for any $i=1, \ldots, d$ the dynamics of the i th stock price process are given by

$$
\begin{aligned}
d \tilde{S}_{t}^{i} & =\tilde{S}_{t}^{i} \mu_{t}^{i} d t+\tilde{S}_{t}^{i} \sum_{j=1}^{n} \sigma_{t}^{i j} d W_{t}^{j} \\
\tilde{S}_{0}^{i} & =s^{i}>0
\end{aligned}
$$

Here $W=\left(W^{1}, \ldots, W^{n}\right)$ denotes a standard n-dimensional Brownian motion and $\left\{\mathcal{F}_{t}\right\}_{0 \leq t \leq T}$ is the filtration generated by W satisfying the usual conditions. The coefficients σ and μ are assumed to be bounded predictable processes with values in $\mathbb{R}^{d \times n}$ and \mathbb{R}^{d} respectively. The bank account is modelled by

$$
\begin{aligned}
d \tilde{B}_{t} & =\tilde{B}_{t} r_{t} d t \\
\tilde{B}_{0} & =1
\end{aligned}
$$

We suppose furthermore that there exists an ELMM Q for the discounted stock price process. Assume now that the number of stocks d is equal to the dimension n of the underlying Brownian motion and that the volatility matrix $\sigma=\left(\sigma^{i j}\right)$ is $d P \otimes d t$-a.s. nonsingular. Prove that these conditions imply the following:
a) The market price of risk λ is $d P \otimes d t$-a.s. unique.
b) ELMM Q is unique.
c) Every discounted payoff $H \in L^{\infty}\left(\mathcal{F}_{T}\right)$ is attainable (with an admissible self-financing strategy). Hint: Consider the Q-martingale with final value H and use a martingale representation theorem under P.

Exercise 3-2

Assume Black-Scholes framework with interest rate r, and time running from 0 to T. Consider the option with payoff $h\left(S_{T}\right)=S_{T}^{p}$ at time T, for some $p \in \mathbb{R}$. Calculate the corresponding hedging strategy $\varphi_{t}=\left(\eta_{t}, \theta_{t}\right)$.

Exercise 3-3

Let $T>0$ be finite time horizon, and an adapted cadlag $U=\left(U_{t}\right)_{0 \leq t \leq T}$, with $\sup _{t \in[0, T]}\left|U_{t}\right| \in$ L^{1}, be the discounted exercise value of an American option. Under the risk neutral pricing probability, the selling price of the American option is given by

$$
V_{t}=\operatorname{ess} \sup _{t \leq \tau \leq T} E\left[U_{\tau} \mid \mathcal{F}_{t}\right], t \in[0, T]
$$

Show that

$$
V_{0}=\inf _{M \in H_{0}^{1}} E\left[\sup _{0 \leq t \leq T}\left(U_{t}-M_{t}\right)\right]
$$

where H_{0}^{1} is the space of martingales M for which $\sup _{t \in[0, T]}\left|M_{t}\right| \in L^{1}$, and $M_{0}=0$. Assume $V_{0}<\infty$.

Exercise 3-4

Let $w \in C^{2}([0, \infty])$. Show that under the risk neutral pricing probability

$$
E\left[w\left(S_{T}\right)\right]=w\left(S_{0}\right)+\int_{0}^{S_{0}} w^{\prime \prime}(K) P(K) d K+\int_{S_{0}}^{\infty} w^{\prime \prime}(K) C(K) d K
$$

where $S_{0}=E\left[S_{T}\right], C(K)=E\left[\left(S_{T}-K\right)^{+}\right]$, and $P(K)=E\left[\left(K-S_{T}\right)^{+}\right]$.

Definition 1 Given a topological vector space X, its dual X^{*}, and a convex proper (i.e. $-\infty<f \not \equiv \infty)$ extended real valued f on X, let us recall that the sub-differential mapping $\partial f: X \rightarrow 2^{X^{*}}$ is

$$
\partial f(x):=\left\{x^{*} \in X^{*}: f(y) \geq f(x)+x^{*}(y-x) \forall y \in X\right\}
$$

on $\operatorname{dom}(f):=\{x \in X: f(x) \in \mathbb{R}\}$, and \emptyset otherwise.

Exercise 3-5

Let f_{n} and f be convex proper functions on \mathbb{R}^{d} such that $f_{n} \rightarrow f$ locally uniformly on dom (f). Let $x_{n} \rightarrow x \in \operatorname{int} \operatorname{dom}(f)$, and $x_{n}^{*} \in \partial f_{n}\left(x_{n}\right)$. Show that $\left(x_{n}^{*}\right)$ is bounded and any accumulation point of $\left(x_{n}^{*}\right)$ is in $\partial f(x)$.

