Mathematical Finance Solutions Sheet 4

Solution 4-1

Writing $X_{t}:=(\mu-r) t+\sigma W_{t}+J_{t}$, we see that

$$
d S_{t}=S_{t-} d X_{t}
$$

Hence, S is the stochastic exponential given by

$$
\begin{aligned}
S_{t} & =S_{0} \mathcal{E}(X)_{t} \\
& =S_{0} \exp \left(X_{t}-\frac{1}{2}[X]_{t}\right) \prod_{0<s \leq t}\left(1+\Delta X_{s}\right) \exp \left(-\Delta X_{s}+\frac{1}{2}\left(\Delta X_{s}\right)^{2}\right)
\end{aligned}
$$

with $\Delta X_{s}=X_{s}-X_{s-}$ and

$$
[X]_{t}=\left\langle X^{c}, X^{c}\right\rangle_{t}+\sum_{0<s \leq t}\left(\Delta X_{s}\right)^{2}
$$

where X^{c} denotes the continuous local martingale part of X. Therefore,

$$
\begin{aligned}
& \exp \left(X_{t}-\frac{1}{2}[X]_{t}\right) \prod_{0<s \leq t} \exp \left(-\Delta X_{s}+\frac{1}{2}\left(\Delta X_{s}\right)^{2}\right) \\
& =\exp \left(\left(\mu-r-\frac{1}{2} \sigma^{2}\right) t+\sigma W_{t}\right)
\end{aligned}
$$

On the other hand,

$$
\prod_{0<s \leq t}\left(1+\Delta X_{s}\right)=\prod_{i=1}^{N_{t}} Y_{i}=\exp \left(\sum_{i=1}^{N_{t}} \log \left(Y_{i}\right)\right)
$$

Then $\tilde{J}_{t}:=\sum_{i=1}^{N_{t}} \log \left(Y_{i}\right)$ is a compound Poisson process so that

$$
\tilde{X}_{t}=\left(\mu-r-\frac{1}{2} \sigma^{2}\right) t+\sigma W_{t}+\tilde{J}_{t}
$$

is a Levy process.

Solution 4-2

a) $d\langle B, W\rangle_{t}=\rho d t$ because $d\left\langle W, W^{\prime}\right\rangle_{t}=0$ and

$$
\begin{aligned}
\langle S, Y\rangle_{t} & =\left\langle\int \sigma\left(u, S_{u}, Y_{u}\right) d W_{u}, \int a\left(u, Y_{u}\right) d B_{u}\right\rangle_{t} \\
& =\int_{0}^{t} \sigma\left(u, S_{u}, Y_{u}\right) a\left(u, Y_{u}\right) d\langle W, B\rangle_{u}=\int_{0}^{t} \sigma\left(u, S_{u}, Y_{u}\right) a\left(u, Y_{u}\right) \rho d u
\end{aligned}
$$

b) Following the lecture notes $Q \sim P$ has a density process Z^{Q} which has a continuous version. Defining L^{Q} by

$$
L^{Q}=\int \frac{1}{Z^{Q}} d Z^{Q}
$$

we have $Z^{Q}=Z_{0}^{Q} \mathcal{E}\left(L^{Q}\right)$. By a general version of Kunita-Watanabe decomposition L^{Q} is in our case given by

$$
L^{Q}=\int \gamma^{Q} \sigma d W+N^{Q}
$$

with $N^{Q} \in \mathcal{M}_{0, l o c}(P)$ and $\left\langle N^{Q}, \int \sigma d W\right\rangle=0$. By Bayes' rule Q is an ELMM for S iff $Z^{Q} S \in M_{l o c}(P)$. Thus by the product rule we obtain

$$
\begin{aligned}
d\left(Z_{t}^{Q} S_{t}\right) & =Z_{t}^{Q} \sigma_{t} d W_{t}+S_{t} d Z_{t}^{Q}+Z_{t}^{Q}\left(\mu_{t} d t+d\left\langle L^{Q}, \int \sigma d W\right\rangle_{t}\right) \\
& =Z_{t}^{Q} \sigma_{t} d W_{t}+S_{t} d Z_{t}^{Q}+Z_{t}^{Q}\left(\mu_{t} d t+\gamma^{Q} \sigma^{2} d t\right)
\end{aligned}
$$

yielding $Z^{Q} S \in \mathcal{M}_{l o c}(P)$ if and only if $\gamma^{Q}=-\frac{\mu_{t}}{\sigma_{t}^{2}}$. Therefore the equivalent local martingale measures Q are parametrized via

$$
\frac{Z^{Q}}{Z_{0}^{Q}}=\mathcal{E}\left(-\int \frac{\mu}{\sigma} d W+N^{Q}\right)
$$

Since the filtration is generated by $\left(W, W^{\prime}\right)$ we can apply the martingale representation theorem to write N^{Q} as

$$
N^{Q}=\int \psi d W+\int \nu d W^{\prime}
$$

where ψ and ν are some predictable processes. As $\left\langle N^{Q}, \int \sigma d W\right\rangle=0$, it follows that $\psi=0$ such that we finally obtain

$$
\frac{Z^{Q}}{Z_{0}^{Q}}=\mathcal{E}\left(-\int \lambda d W+\int \nu d W^{\prime}\right)
$$

where $\lambda=\mu / \sigma$ and ν is some predictable process.
c) We want to change the measure, so we must assume that ν is sufficiently nice, for instance that it satisfies Novikov's condition

$$
E\left[e^{\frac{1}{2} \int_{0}^{T} \nu_{t}^{2} d t}\right]<\infty
$$

By Girsanov, $\left(W^{Q}, W^{\prime Q}\right)$, defined by $W^{Q}=W+\int \lambda d t$ and $W^{\prime Q}=W^{\prime}-\int \nu d t$ is a 2-dimensional Q-Brownian motion. Plugging this into the SDE's

$$
d S=\mu d t+\sigma\left(d W^{Q}-\lambda d t\right)=(\mu-\lambda \sigma) d t+\sigma d W^{Q}
$$

and

$$
\begin{aligned}
d Y & =b d t+a \rho\left(d W^{Q}-\lambda d t\right)+a \sqrt{1-\rho^{2}}\left(d W^{\prime Q}+\nu d t\right) \\
& =\left(b+a\left(\sqrt{1-\rho^{2}} \nu-\rho \lambda\right)\right) d t+a d B^{Q}
\end{aligned}
$$

for the Q-Brownian motion $B^{Q}=\rho W_{t}^{Q}+\sqrt{1-\rho^{2}} W_{t}^{\prime Q}$.

Solution 4-3

a) To show convexity of $\mathcal{C}(x)$, let $X^{1}, X^{2} \in \mathcal{C}(x)$ and $\left.\lambda \in\right] 0,1[$. Then,

$$
\begin{aligned}
\sup _{Y \in \mathcal{D}} E\left[Y\left(\lambda X^{1}+(1-\lambda) X^{2}\right)\right] & \leq \lambda \sup _{Y \in \mathcal{D}} \mathbb{E}\left[Y X^{1}\right]+(1-\lambda) \sup _{Y \in \mathcal{D}} \mathbb{E}\left[Y X^{2}\right] \\
& \leq \lambda x+(1-\lambda) x=x
\end{aligned}
$$

and so $\lambda X^{1}+(1-\lambda) X^{2} \in \mathcal{C}(x)$. To show closedness in $L_{+}^{0}\left(\mathcal{F}_{T}\right)$, let $\left(X^{n}\right)_{n \in \mathbb{N}}$ be a sequence in $\mathcal{C}(x)$ converging in probability to some $X \in L_{+}^{0}\left(\mathcal{F}_{T}\right)$. Then a subsequence, called again $\left(X^{n}\right)_{n \in \mathbb{N}}$, converges P-a.s. to X. Hence, for each $Y \in \mathcal{D}$, by Fatou's lemma,

$$
\mathbb{E}[Y X] \leq \liminf _{n \rightarrow \infty} \mathbb{E}\left[Y X^{n}\right] \leq x
$$

Since \mathcal{D} contains strictly positive random variables (e.g. the densities of equivalent σ martingale measures), this implies that $X \in L^{0}\left(\mathcal{F}_{T}\right)$. Now, taking the supremum over \mathcal{D} gives $X \in \mathcal{C}(x)$.
b) It suffices to show that $E[U(\cdot)]$ is continuous from below, i.e., that $E U\left(X^{n}\right) \uparrow E U(X)$ as $X^{n} \uparrow X$ in P in $\mathcal{C}(x)$. Without loss of generality, we may assume that $U^{-}\left(X^{n}\right) \in L^{1}(P)$ for all $n \in \mathbb{N}$. By (a), $\mathcal{C}(x)$ is convex and closed, and since $P \ll Q$ and

$$
\lim _{n \rightarrow \infty} \sup _{X_{T} \in \mathcal{C}(x)} Q\left(\left|X_{T}\right|>n\right) \leq \lim _{n \rightarrow \infty} \sup _{H \in \mathcal{A}} Q\left(\left|(H \cdot S)_{T}\right|>n\right)=0
$$

it is also bounded. So, we may apply Komlos' lemma (see e.g. W. Schahermayer, Optimal Investment in Incomplete Financial Markets, Lemma 3.3.): there exists a sequence $\left(\widetilde{X}^{n}\right)_{n \in \mathbb{N}}$ with $\widetilde{X}^{n} \in \operatorname{conv}\left(X^{n}, X^{n+1}, \ldots\right)$ such that \widetilde{X}^{n} converges P-a.s., and a fortiori in probability, to some \mathcal{F}_{T}-measurable random variable \widehat{X} taking values in $[0, \infty]$. By convexity of $\mathcal{C}(x), \widetilde{X}^{n} \in \mathcal{C}(x)$ for all $n \in \mathbb{N}$, and by closedness of $\mathcal{C}(x)$ in $L_{+}^{0}\left(\mathcal{F}_{T}\right), \widehat{X} \in \mathcal{C}(x)$.
Now, uniform integrability of $U^{+}(\mathcal{C}(x))$ (which follows from the assumption $u(x)<\infty$) gives

$$
\lim _{n \rightarrow \infty} E\left[U^{+}\left(\widetilde{X}^{n}\right)\right]=E\left[U^{+}(\widehat{X})\right]
$$

while Fatou's lemma gives

$$
\liminf _{n \rightarrow \infty} E\left[U^{-}\left(\widetilde{X}^{n}\right)\right] \geq E\left[U^{-}(\widehat{X})\right]
$$

Moreover, since $E[U(\cdot)]$ is concave and increasing and $\left(X^{n}\right)_{n \in \mathbb{N}}$ is increasing, we have

$$
\begin{aligned}
E\left[U\left(\widetilde{X}^{n}\right)\right]=E\left[U\left(\lambda_{1}^{n} X^{n}+\lambda_{2}^{n} X^{n+1} \cdots\right)\right] & \geq \lambda_{1}^{n} E\left[U\left(X^{n}\right)\right]+\lambda_{2}^{n} E\left[U\left(X^{n+1}\right) \cdots\right. \\
& \geq \inf _{m \geq n} E\left[U\left(X^{m}\right)\right]=E\left[U\left(X^{n}\right)\right], \quad n \in \mathbb{N}
\end{aligned}
$$

Putting everything together gives

$$
E[U(\widehat{X})] \geq \liminf _{n \rightarrow \infty} E\left[U\left(\widetilde{X}^{n}\right)\right] \geq \liminf _{n \rightarrow \infty} E\left[U\left(X^{n}\right)\right]=E[U(x)]
$$

In particular, if we choose $X^{n} \in\{X \in \mathcal{C}(x): 1 / n \leq u(x)-E[U(X)] \leq 1 /(n-1)\}, n \in \mathbb{N}$, we see that $u(x)$ is attained for some $\widehat{X} \in \mathcal{C}(x)$.
c) Choose $r>1$ small enough that $p:=\frac{1}{r b}>1$. We show that $U^{+}(\mathcal{C}(x))$ is bounded in $L^{r}(P)$ and hence uniformly integrable. To this end, by the assumption on U^{+}, it suffices to show that

$$
\sup _{X \in \mathcal{C}(x)} E\left[\left(X^{b}\right)^{r}\right]=\sup _{X \in \mathcal{C}(x)} E\left[X^{1 / p}\right]<\infty
$$

Let $q>1$ be the exponent conjugate to p. Then, by Hölder's inequality, by the hint of part (a), and by the fact that $\left(\frac{d Q}{d P}\right)^{-1}$ has moments of all orders, for each $X \in \mathcal{C}(x)$,

$$
\begin{aligned}
E\left[X^{1 / p}\right] & =E\left[\left(X \frac{d Q}{d P}\right)^{1 / p}\left(\frac{d Q}{d P}\right)^{-1 / p}\right] \leq\left(E\left[X \frac{d Q}{d P}\right]\right)^{1 / p}\left(E\left[\left(\frac{d Q}{d P}\right)^{-q / p}\right]\right)^{1 / q} \\
& \leq x^{1 / p}\left(E\left[\left(\frac{d Q}{d P}\right)^{-q / p}\right]\right)^{1 / q}<\infty
\end{aligned}
$$

Taking the supremum over $\mathcal{C}(x)$ establishes the claim.

Solution 4-4

Denote by $Z=\left(Z_{t}\right)_{t \in[0, T]}$ the density process of Q with respect to P.
a) The second claim follows immediately from the first claim together with the fact that $y Z_{T}=y \frac{d Q}{d P} \in \mathcal{D}(y)$ and the fact that the function V is decreasing. So it remains to show the first claim. Seeking a contradiction, suppose there exists $z \in \mathcal{D}(y)$ such that $A:=\{z>$ $\left.y Z_{T}\right\}$ has $P[A]>0$. Set $a=Q[A]>0$ and define the Q-martingale $M=\left(M_{t}\right)_{t \in[0, T]}$ by $M_{t}:=E_{Q}\left[1_{A} \mid \mathcal{F}_{t}\right]$. Then M is nonnegative and $M_{0}=a$ by the fact that F_{0} is P-trivial. Under Q, there exists admissible H such that $M=a+H \cdot S$. It follows that $M_{T} \in \mathcal{C}(a)$, i.e., $\frac{1}{a} M_{T} \in \mathcal{C}(1)$. Now, on the one hand, by the definition of $\mathcal{D}(y)$,

$$
E\left[\frac{1}{a} M_{T} z\right] \leq y \text { i.e. } E\left[M_{T} z\right] \leq a y
$$

On the other hand,

$$
E\left[M_{T} Z_{T}\right]=E_{Q}\left[M_{T}\right]=M_{0}=a
$$

Thus, we arrive at the contradiction

$$
0 \geq E\left[M_{T}\left(z-y Z_{T}\right)\right]=E\left[1_{\left\{z>y Z_{T}\right\}}\left(z-y Z_{T}\right)\right]>0
$$

b) Note that $0 \leq y_{0}<\infty$ and $v(y)<\infty$ on $] y_{0}, \infty[$. Moreover, recall that the function V is strictly decreasing, strictly convex and continuous on $] 0, \infty[$.
First, define the function $g:] y_{0}, \infty[\rightarrow[-\infty, 0]$ by

$$
g(s)=E\left[Z_{T} V^{\prime}\left(s Z_{T}\right)\right]
$$

This is well defined as $Z_{T} \geq 0 P$-a.s. and $V^{\prime}<0$. Moreover, it is increasing as V^{\prime} is increasing. Thus if $g\left(s_{0}\right)>-\infty$ for some $s_{0}>y_{0}$, it follows by dominated convergence that it is continuous on $\left[s_{0}, \infty\right)$.
Next, for $\left.y_{1}, y_{2} \in\right] y_{0}, \infty\left[, y_{1}<y_{2}\right.$, the fundamental theorem of calculus gives

$$
\begin{equation*}
V\left(y_{1} Z_{T}\right)-V\left(y_{2} Z_{T}\right)=\int_{y_{1}}^{y_{2}} Z_{T} V^{\prime}\left(s Z_{T}\right) d s \tag{1}
\end{equation*}
$$

Now, the left hand side of (1) is integrable by assumption. Thus, the right hand side is so, too, and since $V^{\prime}<0$, the integrand on the right hand side is strictly negative, and Fubini's theorem gives

$$
v\left(y_{2}\right)-v\left(y_{1}\right)=\int_{y_{1}}^{y_{2}} g(s) d s
$$

In particular, the function g is finite a.e. on $] y_{0}, \infty[$, and thus continuous and finite on $] y_{0}, \infty[$. Now the claim follows from the fundamental theorem of calculus.
c) First, by the hint of part (a) of the previous exercise $X \in \mathcal{C}(x)$ if and only if

$$
\sup _{Y \in \mathcal{D}} E[X Y] \leq x
$$

By part (a) of this exercise, this is equivalent to

$$
\mathbb{E}\left[X Z_{T}\right] \leq x
$$

Now, by part (b) and the choice of y_{x},

$$
\begin{equation*}
\mathbb{E}\left[\widehat{X} Z_{T}\right]=E\left[-V^{\prime}\left(y_{x} Z_{T}\right) Z_{T}\right]=-v^{\prime}\left(y_{x}\right)=x, \text { i.e. } U^{\prime}(\widehat{X})=y_{x} Z_{T} \tag{2}
\end{equation*}
$$

We see that $\widehat{X} \in \mathcal{C}(x)$.
Next, fix $X \in \mathcal{C}(x)$. We may assume without loss of generality that $E[U(X)]>-\infty$. By the fact that $\widehat{X}>0 P$-a.s. and U is in $C^{1}(] 0, \infty[)$ and strictly concave on $] 0, \infty[$,

$$
U(X)-U(\widehat{X}) \leq U^{\prime}(\widehat{X})(X-\widehat{X})
$$

where the equality is strict on $\{X \neq \widehat{X}\}$. Taking expectations, (2) yields

$$
\mathbb{E}[U(X)-U(\widehat{X})] \leq \mathbb{E}\left[U^{\prime}(\widehat{X})(X-\widehat{X})\right]=y_{x} \mathbb{E}\left[Z_{T}(X-\widehat{X})\right] \leq 0
$$

If $X=\widehat{X} P$-a.s., then both inequalities are trivially equalities, and if $P[X \neq \widehat{X}]>0$, then the first inequality is strict.

Solution 4-5

The discounted stock price process S^{1} satisfies the SDE

$$
d S_{t}^{1}=S_{t}^{1}\left((\mu-r) d t+\sigma d W_{t}\right)=S_{t}^{1} \sigma\left(\lambda d t+d W_{t}\right)
$$

where $\lambda:=\frac{\mu-r}{\sigma}$ denotes the market price of risk. By the previous round exercise $3-1$, there exists a unique equivalent martingale measure $Q \sim P$ on \mathcal{F}_{T} given by

$$
\frac{d Q}{d P}=\mathcal{E}(-\lambda W)_{T}
$$

Moreover, elementary analysis gives $V(y)=\frac{1-\gamma}{\gamma} y^{-\frac{\gamma}{1-\gamma}}$ and $V^{\prime}(y)=-y^{-\frac{1}{1-\gamma}}$.
a) Fix $y>0$. Then by Exercise $4-4$ (a) and the fact that $\mathcal{E}(a W)$ is a P-martingale for all $a \in \mathbb{R}$,

$$
\begin{aligned}
v(y) & =E\left[\frac{1-\gamma}{\gamma} y^{-\frac{\gamma}{1-\gamma}}\left(\mathcal{E}(-\lambda W)_{T}\right)^{-\frac{\gamma}{1-\gamma}}\right] \\
& =\frac{1-\gamma}{\gamma} y^{-\frac{\gamma}{1-\gamma}} E\left[\exp \left(\frac{\lambda \gamma}{1-\gamma} W_{T}+\frac{1}{2} \frac{\lambda^{2} \gamma}{1-\gamma} T\right)\right] \\
& =\frac{1-\gamma}{\gamma} y^{-\frac{\gamma}{1-\gamma}} \exp \left(\frac{1}{2} \frac{\lambda^{2} \gamma}{(1-\gamma)^{2}} T\right) E\left[\mathcal{E}\left(\frac{\lambda \gamma}{1-\gamma} W\right)_{T}\right] \\
& =\frac{1-\gamma}{\gamma} y^{-\frac{\gamma}{1-\gamma}} \exp \left(\frac{1}{2} \frac{\lambda^{2} \gamma}{(1-\gamma)^{2}} T\right)<\infty
\end{aligned}
$$

b) First, note that $v(y)<\infty$ for some $y \in] 0, \infty[$ implies that

$$
u(x) \leq v(y)+v x<\infty, \quad x \in] 0, \infty[.
$$

Next, fix $x>0$. Then by Exercise 4-4 (b) and part (a),

$$
\begin{aligned}
\widehat{X}_{x} & =-V^{\prime}\left(y_{x} \frac{d Q}{d P}\right)=y_{x}^{-\frac{1}{1-\gamma}}\left(\mathcal{E}(-\lambda W)_{T}\right)^{-\frac{1}{1-\gamma}} \\
& =-v^{\prime}\left(y_{x}\right) \exp \left(-\frac{1}{2} \frac{\lambda^{2} \gamma}{(1-\gamma)^{2}} T\right) \exp \left(\frac{\lambda}{1-\gamma} W_{T}+\frac{1}{2} \frac{\lambda^{2}}{1-\gamma} T\right) \\
& =x \exp \left(\frac{\lambda}{1-\gamma}\left(W_{T}+\lambda T\right)-\frac{1}{2} \frac{\lambda^{2}}{(1-\gamma)^{2}} T\right) \\
& =x \mathcal{E}\left(\frac{\lambda}{1-\gamma} R\right)_{T} .
\end{aligned}
$$

c) Fix $x>0$. By the definition of the stochastic exponential,

$$
\begin{aligned}
\widehat{X} & =x\left(1+\int_{0}^{T} \mathcal{E}\left(\frac{\lambda}{1-\gamma} R\right)_{t} \frac{\lambda}{1-\gamma} d R_{t}\right) \\
& =x+\int_{0}^{T} x \mathcal{E}\left(\frac{\lambda}{1-\gamma} R\right)_{t} \frac{\lambda}{1-\gamma} \frac{1}{\sigma S_{t}} d S_{t}
\end{aligned}
$$

This gives the first claim. Using again that $\mathcal{E}(a W)$ is a P-martingale for all $a \in \mathbb{R}$ gives

$$
\begin{aligned}
u(x) & =\mathbb{E}\left[U\left(\widehat{X}_{x}\right)\right]=\frac{x^{\gamma}}{\gamma} \mathbb{E}\left[\left(\mathcal{E}\left(\frac{\lambda}{1-\gamma} R\right)_{T}\right)^{\gamma}\right] \\
& =\frac{x^{\gamma}}{\gamma} \mathbb{E}\left[\exp \left(\frac{\lambda \gamma}{1-\gamma}\left(W_{T}+\lambda T\right)-\frac{1}{2} \frac{\lambda^{2} \gamma}{(1-\gamma)^{2}} T\right)\right] \\
& =\frac{x^{\gamma}}{\gamma} \exp \left(\frac{1}{2} \frac{\lambda^{2} \gamma}{1-\gamma} T\right) \mathbb{E}\left[\mathcal{E}\left(\frac{\lambda \gamma}{1-\gamma} W\right)_{T}\right] \\
& =\frac{x^{\gamma}}{\gamma} \exp \left(\frac{1}{2} \frac{\lambda^{2} \gamma}{1-\gamma} T\right) .
\end{aligned}
$$

This establishes the second claim.

