D-MATH Prof. Özlem Imamoglu

Serie 1

- 1. Consider the action of $SL_2(\mathbb{R})$ on the set $Mat_2(\mathbb{R})$ of 2×2 -matrices with coefficients in \mathbb{R} defined by $\gamma \circ M := M[\gamma^{-1}] := (\gamma^{-1})^t M \gamma^{-1}$, where $M \in Mat_2(\mathbb{R})$ and $\gamma \in SL_2(\mathbb{R})$.
 - a) Show that this action restricts to the subset $SP_2(\mathbb{R}) \subset Mat_2(\mathbb{R})$ of positive definite symmetric quadratic matrices with determinant 1.

Let us moreover associate to any element z = x + iy in the upper half plane \mathbb{H} the matrix

$$M_z := \begin{pmatrix} y^{-1} & 0\\ 0 & y \end{pmatrix} \begin{bmatrix} \begin{pmatrix} 1 & -x\\ 0 & 1 \end{bmatrix} = \frac{1}{y} \begin{pmatrix} 1 & -x\\ -x & x^2 + y^2 \end{pmatrix} \in \operatorname{Mat}_2(\mathbb{R}).$$

b) Show that the association $z \mapsto M_z$ defines an $SL_2(\mathbb{R})$ -equivariant bijection

$$\phi: \mathbb{H} \to \mathcal{SP}_2(\mathbb{R}).$$

2. Let *D* be any negative integer that is 0 or 1 modulo 4. Let Q_D be the set of quadratic forms $[A, B, C] := Ax^2 + Bxy + Cy^2 \in \mathbb{Z}[x, y]$ such that A > 0 and $B^2 - 4AC = D$ and such that the greatest common divisor of A, B, C is 1. This is called the set of *positive definite primitive quadratic forms of discriminant D*.

For any $\gamma \in \mathrm{SL}_2(\mathbb{Z})$ and any $Q \in \mathcal{Q}_D$ we set $(\gamma Q)[x, y] := Q[ax + by, cx + dy] \in \mathbb{Z}[x, y]$, where $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \gamma^{-1}$.

a) Show that this defines an action of $SL_2(\mathbb{Z})$ on \mathcal{Q}_D and show that the association

$$[A, B, C] \mapsto \psi([A, B, C]) := \frac{2}{\sqrt{|D|}} \begin{pmatrix} A & \frac{B}{2} \\ \frac{B}{2} & C \end{pmatrix}$$

defines an $SL_2(\mathbb{Z})$ -equivariant map $\psi : \mathcal{Q}_D \to \mathcal{SP}_2(\mathbb{R})$.

The orbits of this action are called *equivalence classes* of Q_D .

- **b**) Show that $\phi^{-1} \circ \psi$ sends any quadratic form $[A, B, C] \in \mathcal{Q}_D$ to its unique root $\frac{-B+i\sqrt{|D|}}{2A}$ in \mathbb{H} .
- c) Show that any equivalence class of Q_D has a unique representative in the set

$$\mathcal{Q}_D^{\text{red}} := \{ [A, B, C] \in \mathcal{Q}_D | -A < B \le A < C \text{ or } 0 \le B \le A = C \}$$

of reduced quadratic forms of Q_D .

1

d) Conclude that the set of equivalence classes of \mathcal{Q}_D is finite. Its order $h(D) := |\operatorname{SL}_2(\mathbb{Z}) \setminus \mathcal{Q}_D|$ is called the *class number* of D.

3. Let $\tau = x + iy \in \mathbb{H}$, $q := e^{2\pi i \tau}$, $\sigma_1(n) := \sum_{d|n} d$. We define Eisenstein series of weight 2:

$$\begin{split} G_2(\tau) &:= \frac{1}{2} \sum_{0 \neq n \in \mathbb{Z}} \frac{1}{n^2} + \sum_{0 \neq m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} \frac{1}{(m\tau + n)^2} \\ G_2^*(\tau) &:= G_2(\tau) - \frac{\pi}{2y} \\ G_{2,\varepsilon}(\tau) &:= \frac{1}{2} \sum_{m,n \in \mathbb{Z}} \frac{1}{(m\tau + n)^2} \frac{1}{|m\tau + n|^{2\varepsilon}}, \text{ for } \varepsilon > 0 \end{split}$$

- a) Let $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$. Check that $G_{2,\varepsilon}$ converges absolutely and locally uniformely and satisfies: $G_{2,\varepsilon}(\gamma \tau) = (c\tau + d)^2 |c\tau + d|^{2\varepsilon} G_{2,\varepsilon}(\tau)$.
- **b)** For $\varepsilon > -\frac{1}{2}, \tau \in \mathbb{H}$ let:

$$I_{\varepsilon}(\tau) := \int_{-\infty}^{\infty} \frac{dt}{(\tau+t)^2 |\tau+t|^{2\varepsilon}} \text{ and } I(\varepsilon) := \int_{-\infty}^{\infty} (t+i)^{-2} (t^2+1)^{-\varepsilon} dt$$

Consider $G_{2,\varepsilon}(\tau) - \sum_{m=1}^{\infty} I_e(m\tau)$. Use the mean-value theorem to show that it converges absolutely and locally uniformly for $\varepsilon > -\frac{1}{2}$ and that its limit as $\varepsilon \to 0$ is $G_2(\tau)$.

- c) Show that: $I_{\varepsilon}(x + iy) = \frac{I(\varepsilon)}{y^{1+2\varepsilon}}$ and $I'(0) = -\pi$. Use this to show that: $\lim_{\varepsilon \to \infty} G_{2,\varepsilon}(\tau) = G_2^*(\tau)$. Hence G_2^* transforms like a modular form of weight 2.
- d) Conclude that:

$$G_2\left(\frac{az+b}{cz+d}\right) = (cz+d)^2 G_2(z) - \pi i c(cz+d).$$

- Recall that Möbius transformations form the group of automorphisms of the Riemann sphere, and that Aut(Ĉ) ≅ PSL(2, C).
 - a) Show that any non-trivial automorphism $A \in Aut(\hat{\mathbb{C}}), A \neq 1$, has at least one and at most two fixed points.
 - b) If A ∈ Aut(Ĉ) has two distinct fixed points z₋, z₊ ∈ Ĉ, then show that A is conjugate to the LFT z ↦ µ ⋅ z, for some µ ∈ C[×] (called the multiplier).
 - c) Show that : If $A \in Aut(\hat{\mathbb{C}})$ has exactly one fixed point, then it is conjugate to the translation $z \mapsto z + 1$.

A non-trivial $A \in \operatorname{Aut}(\hat{\mathbb{C}})$ is called

- parabolic iff A has exactly one fixed point,
- elliptic iff $|\mu| = 1$
- hyperbolic iff $\mu \in \mathbb{R}_{>0}$,
- loxodromic otherwise.
- d) Let z ∈ C. Describe (or sketch) the orbits {Aⁿz : n ∈ Z} on the sphere for each type of motion.
- e) One can also classify the motions algebraically. Check that the trace is not well-defined on PSL(2, C) but that its square is. Then give a characterization of parabolic, elliptic, hyperbolic and loxodromic motions using the square of the trace. (Note that the trace is conjugation-invariant.)

Remark : The loxodromic case does not appear for $PSL(2, \mathbb{R})$.

- 5. Let $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ be the generators of the full modular group $SL_2(\mathbb{Z})$ and let p be a prime. For $0 \le l < p$ we set $\alpha_l := ST^l$ and $\alpha_p := 1$.
 - **a**) Show that: $SL_2(\mathbb{Z}) = \bigcup_{l=0}^p \alpha_l^{-1} \Gamma_0(p) = \bigcup_{l=0}^p \Gamma_0(p) \alpha_l$.
 - **b)** Let $\mathcal{F} = SL_2(\mathbb{Z}) \setminus \mathbb{H}$ denote the usual fundamental domain of $SL_2(\mathbb{Z})$ and set $\mathcal{F}_p := \bigcup_{l=0}^p \alpha_l \mathcal{F}$. Show that \mathcal{F}_p is a fundamental domain of $\Gamma_0(p)$.
 - c) Draw a picture of \mathcal{F}_2 . What are the cusps of $\Gamma_0(2)$?