Serie 1

1. Consider the action of $\mathrm{SL}_{2}(\mathbb{R})$ on the set $\operatorname{Mat}_{2}(\mathbb{R})$ of 2×2-matrices with coefficients in \mathbb{R} defined by $\gamma \circ M:=M\left[\gamma^{-1}\right]:=\left(\gamma^{-1}\right)^{t} M \gamma^{-1}$, where $M \in \operatorname{Mat}_{2}(\mathbb{R})$ and $\gamma \in \operatorname{SL}_{2}(\mathbb{R})$.
a) Show that this action restricts to the subset $\mathcal{S P}_{2}(\mathbb{R}) \subset \operatorname{Mat}_{2}(\mathbb{R})$ of positive definite symmetric quadratic matrices with determinant 1 .

Let us moreover associate to any element $z=x+i y$ in the upper half plane \mathbb{H} the matrix

$$
M_{z}:=\left(\begin{array}{cc}
y^{-1} & 0 \\
0 & y
\end{array}\right)\left[\left(\begin{array}{cc}
1 & -x \\
0 & 1
\end{array}\right)\right]=\frac{1}{y}\left(\begin{array}{cc}
1 & -x \\
-x & x^{2}+y^{2}
\end{array}\right) \in \operatorname{Mat}_{2}(\mathbb{R}) .
$$

b) Show that the association $z \mapsto M_{z}$ defines an $\mathrm{SL}_{2}(\mathbb{R})$-equivariant bijection

$$
\phi: \mathbb{H} \rightarrow \mathcal{S} \mathcal{P}_{2}(\mathbb{R})
$$

2. Let D be any negative integer that is 0 or 1 modulo 4 . Let \mathcal{Q}_{D} be the set of quadratic forms $[A, B, C]:=A x^{2}+B x y+C y^{2} \in \mathbb{Z}[x, y]$ such that $A>0$ and $B^{2}-4 A C=D$ and such that the greatest common divisor of A, B, C is 1 . This is called the set of positive definite primitive quadratic forms of discriminant D.

For any $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$ and any $Q \in \mathcal{Q}_{D}$ we set $(\gamma Q)[x, y]:=Q[a x+b y, c x+d y] \in \mathbb{Z}[x, y]$, where $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\gamma^{-1}$.
a) Show that this defines an action of $\mathrm{SL}_{2}(\mathbb{Z})$ on \mathcal{Q}_{D} and show that the association

$$
[A, B, C] \mapsto \psi([A, B, C]):=\frac{2}{\sqrt{|D|}}\left(\begin{array}{cc}
A & \frac{B}{2} \\
\frac{B}{2} & C
\end{array}\right)
$$

defines an $\mathrm{SL}_{2}(\mathbb{Z})$-equivariant map $\psi: \mathcal{Q}_{D} \rightarrow \mathcal{S P}_{2}(\mathbb{R})$.
The orbits of this action are called equivalence classes of \mathcal{Q}_{D}.
b) Show that $\phi^{-1} \circ \psi$ sends any quadratic form $[A, B, C] \in \mathcal{Q}_{D}$ to its unique root $\frac{-B+i \sqrt{|D|}}{2 A}$ in \mathbb{H}.
c) Show that any equivalence class of \mathcal{Q}_{D} has a unique representative in the set

$$
\mathcal{Q}_{D}^{\text {red }}:=\left\{[A, B, C] \in \mathcal{Q}_{D} \mid-A<B \leq A<C \text { or } 0 \leq B \leq A=C\right\}
$$

of reduced quadratic forms of \mathcal{Q}_{D}.
d) Conclude that the set of equivalence classes of \mathcal{Q}_{D} is finite. Its order $h(D):=\left|\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{Q}_{D}\right|$ is called the class number of D.
3. Let $\tau=x+i y \in \mathbb{H}, q:=e^{2 \pi i \tau}, \sigma_{1}(n):=\sum_{d \mid n} d$. We define Eisenstein series of weight 2 :

$$
\begin{aligned}
G_{2}(\tau) & :=\frac{1}{2} \sum_{0 \neq n \in \mathbb{Z}} \frac{1}{n^{2}}+\sum_{0 \neq m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} \frac{1}{(m \tau+n)^{2}} \\
G_{2}^{*}(\tau) & :=G_{2}(\tau)-\frac{\pi}{2 y} \\
G_{2, \varepsilon}(\tau) & :=\frac{1}{2} \sum_{m, n \in \mathbb{Z}}^{\prime} \frac{1}{(m \tau+n)^{2}} \frac{1}{|m \tau+n|^{2 \varepsilon}}, \text { for } \varepsilon>0
\end{aligned}
$$

a) Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})$. Check that $G_{2, \varepsilon}$ converges absolutely and locally uniformely and satisfies: $G_{2, \varepsilon}(\gamma \tau)=(c \tau+d)^{2}|c \tau+d|^{2 \varepsilon} G_{2, \varepsilon}(\tau)$.
b) For $\varepsilon>-\frac{1}{2}, \tau \in \mathbb{H}$ let:

$$
I_{\varepsilon}(\tau):=\int_{-\infty}^{\infty} \frac{d t}{(\tau+t)^{2}|\tau+t|^{2 \varepsilon}} \text { and } I(\varepsilon):=\int_{-\infty}^{\infty}(t+i)^{-2}\left(t^{2}+1\right)^{-\varepsilon} d t
$$

Consider $G_{2, \varepsilon}(\tau)-\sum_{m=1}^{\infty} I_{e}(m \tau)$. Use the mean-value theorem to show that it converges absolutely and locally uniformly for $\varepsilon>-\frac{1}{2}$ and that its limit as $\varepsilon \rightarrow 0$ is $G_{2}(\tau)$.
c) Show that: $I_{\varepsilon}(x+i y)=\frac{I(\varepsilon)}{y^{1+2 \varepsilon}}$ and $I^{\prime}(0)=-\pi$.

Use this to show that: $\lim _{\varepsilon \rightarrow \infty} G_{2, \varepsilon}(\tau)=G_{2}^{*}(\tau)$.
Hence G_{2}^{*} transforms like a modular form of weight 2.
d) Conclude that:

$$
G_{2}\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{2} G_{2}(z)-\pi i c(c z+d) .
$$

4. Recall that Möbius transformations form the group of automorphisms of the Riemann sphere, and that $\operatorname{Aut}(\widehat{\mathbb{C}}) \cong \operatorname{PSL}(2, \mathbb{C})$.
a) Show that any non-trivial automorphism $A \in \operatorname{Aut}(\hat{\mathbb{C}}), A \neq 1$, has at least one and at most two fixed points.
b) If $A \in \operatorname{Aut}(\hat{\mathbb{C}})$ has two distinct fixed points $z_{-}, z_{+} \in \hat{\mathbb{C}}$, then show that A is conjugate to the LFT $z \mapsto \mu \cdot z$, for some $\mu \in \mathbb{C}^{\times}$(called the multiplier).
c) Show that: If $A \in \operatorname{Aut}(\hat{\mathbb{C}})$ has exactly one fixed point, then it is conjugate to the translation $z \mapsto z+1$.

A non-trivial $A \in \operatorname{Aut}(\hat{\mathbb{C}})$ is called

- parabolic iff A has exactly one fixed point,
- elliptic iff $|\mu|=1$
- hyperbolic iff $\mu \in \mathbb{R}_{>0}$,
- loxodromic otherwise.
d) Let $z \in \hat{\mathbb{C}}$. Describe (or sketch) the orbits $\left\{A^{n} z: n \in \mathbb{Z}\right\}$ on the sphere for each type of motion.
e) One can also classify the motions algebraically. Check that the trace is not well-defined on $\operatorname{PSL}(2, \mathbb{C})$ but that its square is. Then give a characterization of parabolic, elliptic, hyperbolic and loxodromic motions using the square of the trace. (Note that the trace is conjugation-invariant.)

Remark : The loxodromic case does not appear for $\operatorname{PSL}(2, \mathbb{R})$.
5. Let $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ be the generators of the full modular group $S L_{2}(\mathbb{Z})$ and let p be a prime. For $0 \leq l<p$ we set $\alpha_{l}:=S T^{l}$ and $\alpha_{p}:=1$.
a) Show that: $S L_{2}(\mathbb{Z})=\bigcup_{l=0}^{p} \alpha_{l}^{-1} \Gamma_{0}(p)=\bigcup_{l=0}^{p} \Gamma_{0}(p) \alpha_{l}$.
b) Let $\mathcal{F}=S L_{2}(\mathbb{Z}) \backslash \mathbb{H}$ denote the usual fundamental domain of $S L_{2}(\mathbb{Z})$ and set $\mathcal{F}_{p}:=\bigcup_{l=0}^{p} \alpha_{l} \mathcal{F}$. Show that \mathcal{F}_{p} is a fundamental domain of $\Gamma_{0}(p)$.
c) Draw a picture of \mathcal{F}_{2}. What are the cusps of $\Gamma_{0}(2)$?

