Solutions 5

1. Let $a:=(a(n))_{n>1}$ be a sequence of complex numbers. We say that the sequence a is multiplicative if $a(m n)=a(m) a(n)$ for all coprime integers $m, n($ i.e. $\operatorname{gcd}(m, n)=1$ for all $m, n \geq 1$). The sequence a is called completely multiplicative if $a(m n)=a(m) a(n)$ holds in general.

Let $\sigma_{a} \in \mathbb{R}$ be such that

$$
L(s):=\sum_{n \geq 1} \frac{a(n)}{n^{s}}
$$

converges absolutely on the half plane of convergence $H(a):=\left\{s \in \mathbb{C} \mid \operatorname{Re}(s)>\sigma_{a}\right\}$.
a) Show that if a is multiplicative, then

$$
L(s)=\prod_{p}\left(\sum_{k \geq 0} \frac{a\left(p^{k}\right)}{p^{k s}}\right)
$$

for all $s \in H(a)$.
b) Show that if a is completely multiplicative, then

$$
L(s)=\prod_{p} \frac{1}{1-a(p) p^{-s}}
$$

for all $s \in H(a)$.
2. Let $f \mathbb{R}_{+}^{\times} \rightarrow \mathbb{C}$ be a continuous function such that $f(y) y^{s-1} \in L^{1}\left(\mathbb{R}_{+}^{\times}\right)$for each

$$
s \in\langle\alpha, \beta\rangle:=\{s \in \mathbb{C} \mid \alpha<\operatorname{Re}(s)<\beta\}
$$

the fundamental strip determined by $\alpha<\beta \in \mathbb{R} \cup \infty$. Its Mellin transform is defined by

$$
\mathcal{M}(f)(s):=\int_{0}^{\infty} f(y) y^{s} \frac{d y}{y}
$$

for all $s \in\langle\alpha, \beta\rangle$.
a) Show that $\mathcal{M}(f)$ is well-defined and holomorphic.
b) Prove the following identities for $\mathcal{M}(f)$:

$$
\begin{aligned}
\mathcal{M}\left(y^{\nu} f(y)\right)(s) & =\mathcal{M}(f(y))(s+\nu) \\
\mathcal{M}(f(\nu y))(s) & =\nu^{-s} \mathcal{M}(f(y))(s) \\
\mathcal{M}\left(f\left(y^{\nu}\right)\right)(s) & =\frac{1}{\nu} \mathcal{M}(f(y))\left(\frac{s}{\nu}\right) \\
\mathcal{M}\left(\frac{1}{y} f\left(\frac{1}{y}\right)\right)(s) & =\mathcal{M}(f(y))(1-s) \\
\frac{d}{d s} \mathcal{M}(f(y))(s) & =\mathcal{M}(f(y) \log y)(s) \\
\mathcal{M}\left(\frac{d}{d y} f(y)\right)(s) & =-(s-1) \mathcal{M}(f(y))(s-1)
\end{aligned}
$$

where $\nu>0$.
3. Recall the Gamma function $\Gamma(s)=\int_{0}^{\infty} e^{-t} t^{s} \frac{d t}{t}$ defined for all $s \in \mathbb{C}$ with $\operatorname{Re}(s)>0$. Prove that
a) The function $\Gamma(s)$ can be analytically continued to the whole complex plane into a meromorphic function whose poles are exactly non-positive integers and satisfies the functional equation $\Gamma(s+1)=\Gamma(s)$.
b) Show that the meromorphic continuation satisfies $\Gamma(s)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!(k+s)}+\int_{1}^{\infty} e^{-y} y^{s} \frac{d y}{y}$ and conclude that $\operatorname{Res}(\Gamma,-n)=\frac{(-1)^{n}}{n!}$.
c) Prove the reflection formula $\Gamma(1-s) \Gamma(s)=\frac{\pi}{\sin (\pi s)}$ and conclude that $\frac{1}{\Gamma(s)}$ is an entire function of s.
d) Compute $\Gamma\left(\frac{1}{2}\right)$ and prove the duplication formula $\Gamma(s) \Gamma\left(s+\frac{1}{2}\right)=2^{\frac{1}{2}-2 s} \sqrt{2 \pi} \Gamma(2 s)$.
e) Show that

$$
\begin{aligned}
\mathcal{M}\left(e^{-y^{2}}\right)(s) & =\frac{1}{2} \Gamma\left(\frac{s}{2}\right) & & \text { for any } s \in H(0), \\
\mathcal{M}\left(\frac{e^{-y}}{1-e^{-y}}\right)(s) & =\Gamma(s) \zeta(s) & & \text { for any } s \in H(1)
\end{aligned}
$$

4. a) Take a modular form $f \in \mathcal{M}_{k}(\Gamma)$ with q-expansion $f=\sum a(n) q^{n}$. Let χ be a character $\bmod p$, where p is a prime, and set

$$
f_{\chi}(z)=\sum a(n) \chi(n) q^{n}
$$

Show that $f_{\chi} \in \mathcal{M}_{k}\left(\Gamma_{0}\left(p^{2}\right), \chi^{2}\right)$, i.e.

$$
f_{\chi}(\gamma z)=\chi(d)^{2}(c z+d)^{k} f(z)
$$

Moreover, show that if $f \in \mathcal{S}_{k}(\Gamma)$, then $f_{\chi} \in \mathcal{S}_{k}\left(\Gamma_{0}\left(p^{2}\right), \chi^{2}\right)$.
b) Given N a positive integer, let $\omega_{N}:=\left({ }_{N}{ }^{-1}\right)$. Show that ω_{N} normalizes $\Gamma_{0}(N)$ and that if $f \in \mathcal{M}_{k}\left(\Gamma_{0}(N)\right)$, then

$$
\left.f\right|_{\omega_{N}}=N^{-k / 2} z^{-k / 2} f\left(\frac{-1}{N z}\right)
$$

is also in $\mathcal{M}_{k}\left(\Gamma_{0}(N)\right)$.
c) Let $f \in \mathcal{S}_{k}(\Gamma)$, and let χ be a character $\bmod p$. Show that $f_{\chi} \left\lvert\, \omega_{p^{2}}=\frac{\tau(\chi)^{2}}{p} f_{\bar{\chi}}\right.$, where $\tau(\chi)=G(1, \chi)$ denotes the Gauss sum.
5. Let again $f \in \mathcal{S}_{k}(\Gamma)$, and let χ be a Dirichlet character $\bmod p$. Set

$$
L(f, \chi, s)=\sum_{n \geq 1} \frac{a(n) \chi(n)}{n^{s}} \quad \text { and } \quad \Lambda(f, \chi, s)=\left(\frac{p}{2 \pi}\right)^{s} \Gamma(s) L(f, \chi, s)
$$

Prove the functional equation $\Lambda(f, \chi, s)=i^{k} \frac{\tau(\chi)^{2}}{p} \Lambda(f, k-s, \bar{\chi})$.

