D-MATH Prof. Özlem Imamoglu Modular Forms

HS 15

Serie 7

1. Let $z \in \mathbb{H}$ and consider the Θ -function defined by

$$\Theta_z(t) = \sum_{m,n\in\mathbb{Z}} e^{-\pi t \frac{|mz+n|^2}{y}}$$

for all t > 0.

a) Show that Θ_z satisfies the functional equation $\Theta_z(t) = \frac{1}{t} \Theta_z(\frac{1}{t})$. For all $s \in \langle 1, \infty \rangle$, let

$$E(z,s) = \sum_{\gamma \in \Gamma_{\infty} \setminus \Gamma} \operatorname{Im}(\gamma z)^{s} = \sum_{\substack{c,d \in \mathbb{Z} \\ (c,d)=1}} \frac{y^{s}}{|cz+d|^{2s}}$$

and

$$E^*(z,s) = \pi^{-s} \Gamma(s) 2\zeta(2s) E(z,s) = \pi^{-s} \Gamma(s) \sum_{\substack{m,n \in \mathbb{Z} \\ (m,n) \neq (0,0)}} \frac{y^s}{|mz+n|^{2s}}.$$

b) Check that $E(\gamma z, s) = E(z, s)$ for all $\gamma \in \Gamma$ and show that

$$E^*(z,s) = \int_0^\infty \left(\Theta_z(t) - 1\right) t^s \frac{dt}{t}.$$

c) Show that $E^*(z, s)$ has a meromorphic continuation to the whole complex s-plane with single poles at s = 0 and s = 1 with residues -1 and 1 respectively. Finally, prove the functional equation $E^*(z, 1 - s) = E^*(z, s)$.

2. Let $\varphi : \mathbb{H} \to \mathbb{C}$ be an analytic function such that $\varphi(\gamma z) = \varphi(z)$ for all $\gamma \in \Gamma$ and $\varphi(z) = O(y^{-C})$ as $y \to \infty$ for all C > 0. Such a function has a Fourier expansion of the form $\varphi(z) = \sum_{n \in \mathbb{Z}} \varphi_n(y) e^{2\pi i n x}$ where $\varphi_n(y) = \int_0^1 \varphi(x + i y) e^{-2\pi i n x} dx$. Set

$$\Lambda_{\varphi}(s) = \pi^{-s} \Gamma(s) 2\zeta(2s) \mathcal{M}(\varphi_0)(s-1)$$

for all $s \in \langle 1, \infty \rangle$.

a) Show that $\mathcal{M}(\varphi_0)(s)$ is indeed well-defined on the fundamental strip $\langle 0, \infty \rangle$ and that it is bounded in every vertical strip strictly contained in $\langle 0, \infty \rangle$.

b) Check that Λ_{φ} has the following integral representation

$$\Lambda_{\varphi}(s) = \langle \varphi, \overline{E^*(\cdot, s)} \rangle = \int_{\mathcal{F}} \varphi(z) E^*(z, s) d\mu(z)$$

where \mathcal{F} denotes a fundamental domain for Γ .

c) Prove that Λ_{φ} has a meromorphic continuation to the whole complex plane with simple poles at s = 0 and s = 1 with residues $\mp \int_{\mathcal{F}} \varphi(z) d\mu(z)$. It is bounded in any vertical strip (that does not contain a pole) and satisfies the functional equation

$$\Lambda_{\varphi}(s) = \Lambda_{\varphi}(1-s).$$

N.B. This is the simplest case of the Rankin–Selberg method.

Let $f = \sum a_n q^n \in \mathcal{S}_k(\Gamma)$ and $g = \sum b_n q^n \in \mathcal{M}_k(\Gamma)$ and set $\phi = f\overline{g}y^k$. We define

$$L(f \times g, s) = 2\zeta(2s - 2k + 2) \sum_{n \ge 1} a_n \overline{b_n} n^{-s},$$

$$\Lambda(f \times g, s) = \pi^{k-1} (2\pi)^{-2s} \Gamma(s) \Gamma(s - k + 1) L(f \times g, s).$$

For simplicity, we will assume that $b_n = \overline{b_n}$ for all n.

The *L*-series $L(f \times g, s)$ is called the Rankin–Selberg convolution of f and g.

d) Check that φ satisfies the same properties as the function φ at the beginning of the exercise. Show that for all s ∈ (0,∞)

$$\mathcal{M}(\phi_0)(s) = (4\pi)^{-(s+k)} \Gamma(s+k) \sum_{n \ge 1} a_n \overline{b_n} n^{-(s+k)}.$$

e) Prove that $\Lambda(f \times g, s)$ has a meromorphic continuation to the whole complex plane with simple poles at s = k and s = k - 1 with residues $\pm \langle f, g \rangle$. It is bounded in any vertical strip (that does not contain a pole) and satisfies the functional equation

$$\Lambda(f \times g, s) = \Lambda(f \times g, 2k - 1 - s).$$

Hint: Show first that $\Lambda_{\phi}(s) = \Lambda(f \times g, s + k - 1)$.

3. The MacDonald–Bessel function is given by

$$K_{s}(y) = \frac{1}{2} \int_{0}^{\infty} e^{-\frac{y}{2}(t+\frac{1}{t})} t^{s} \frac{dt}{t}$$

for all y > 0, $s \in \mathbb{C}$. It is entire as a function in s and decays rapidly as $y \to \infty$. Moreover, one can show by a change of variable that $K_s(y) = K_{-s}(y)$.

a) Set

$$I_s(a) = \int_{\mathbb{R}} \frac{e^{iau}}{(u^2 + 1)^s} du$$

for all $a \in \mathbb{R}$, $s \in \langle 1/2, \infty \rangle$. Prove that

$$\Gamma(s)I_s(a) = \begin{cases} \sqrt{\pi}\Gamma(s-1/2) & a=0\\ 2\sqrt{\pi} \left|\frac{a}{2}\right|^{s-1/2} K_{s-1/2}(|a|) & a \neq 0. \end{cases}$$

Let $s \in \langle 1, \infty \rangle$ and consider the Fourier expansion $E^*(z, s) = \sum_{n \in \mathbb{Z}} a_n(y, s) e^{2\pi i n x}$ with coefficients

$$a_0(y,s) = 2\Lambda(2s)y^s + 2\Lambda(2s-1)y^{1-s}$$

$$a_n(y,s) = 4\sqrt{y}|n|^{s-1/2}\sigma_{1-2s}(|n|)K_{s-1/2}(2\pi|n|y)$$

where $\Lambda(s) = \pi^{-s/2} \Gamma(s/2) \zeta(s)$.

b) Prove that each coefficient $a_n(y,s)$, $n \neq 0$, has an analytical continuation to an entire function and satisfies the functional equation

$$a_n(y,s) = a_n(y,1-s).$$

c) Show that $\Lambda(s)$ has a meromorphic continuation to the whole complex plane with simple poles at s = 0, 1 with residues ∓ 1 , and that it satisfies the functional equation

$$\Lambda(s) = \Lambda(1-s)$$

4. a) Show that

$$\mathcal{M}(K_s)(w) = 2^{w-2}\Gamma\left(\frac{w+s}{2}\right)\Gamma\left(\frac{w-s}{2}\right).$$

b) Show that

$$\mathcal{M}\left(\left(E^*(iy,s)-a_0(y,s)\right)(w) = 2\Lambda(w+s)\Lambda(s-w).\right)$$

Hint: Show first that $\sum_{n\geq 1} \sigma_w(n) n^{-s} = \zeta(s) \zeta(s-w)$.