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Solutions 3

1. a) Show that j : Γ\H → C ∪ {∞} gives a bijection between Γ\H and the Riemann sphere
C ∪ {∞}. More precisely, j maps∞ to∞ and induces a bijection between Γ\H and the
complex plane C.

Solution : For any α ∈ C, the difference function d := (12)3g32 − α∆ defines a modular
form of weight 12. Hence, the valence formula reads

1

2
ordi(d) +

1

3
ord%(d) +

∑
ordp(d) = 1,

with each order being a non-negative integer. It follows that there is exactly one point
p ∈ Γ\H such that j(p) = α.

b) Let F be the standard fundamental domain for the action of Γ on H.

Find j(i), j(%), and determine all τ ∈ F such that j(τ) ∈ R. Then show that j maps the
left half of F onto H and the right half of F onto the lower half plane.

Solution : Plugging the relations i2 = −1 and %3 = 1 into the definition of Eisenstein
series yields

G6(i) =
∑
m,n

1

(mi+ n(−i2))6
=

1

i6

∑
m,n

1

(m− ni)6
= −G6(i)

and similar relations for G4(%) so that we conclude that G6(i) = 0 and G4(%) = 0.
Therefore, j(i) = (12)3 and j(%) = 0.

Next, we determine all τ ∈ F such that j(τ) is real. The q-expansion of the j-function
has the form

j =
1

q
+
∑
n≥0

anq
n.

One can immediately read from this expansion the relation

j(τ) = j(−τ), (1)

that is, points that are reflections of one another with respect to the imaginary axis will
be mapped to conjugate values. In particular, all points in F that lie on the imaginary
axis will be mapped to real values by the j-function. Secondly, all points in F that lie
on the unit circle centered at the origin – that is, explicilty, all points on the circular arc
connecting % and i – satisfy ττ = 1 and hence

j(τ) = j(−τ) = j(−1/τ) = j

((
−1

1

)
τ

)
= j(τ),
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where the last equality follows from the modularity of j. Hence, all points on the circular
arc between % and i also map to real values. Thirdly, any point lying on the left vertical
boundary of F is expressed in rectangular coordinates as−1/2+ iy for some y ≥

√
3 /2,

and it is immediate from plugging in these values in the q-expansion of j that

j(−1/2 + iy) = −e2πy +
∑
n≥0

an(−1)ne−2πny ∈ R.

Let C denote the contour encircling the left half of F , that is the closed path composed
of the vertical half-line going from i∞ to %, the circular arc from % to i and the vertical
half-line from i back to i∞. If one runs along C, then the enclosed left half FL of F is
always to the left, so that under j, that region will be mapped to the left of the real axis,
that is to the upper half plane. By the symmetry relation above, the right-half FR of F is
mapped to the lower half plane. Hence, by part (a), j(C) = R, j(FL) = H, and j(FR) is
the lower half plane.

2. Given a lattice L = Zω1 ⊕ Zω2, let

g2 := g2(L) = g2(ω1, ω2) = 60
∑
m,n

(mω1 + nω2)
−4 ,

g3 := g3(L) = g3(ω1, ω2) = 140
∑
m,n

(mω1 + nω2)
−6 .

These two functions g2 and g3 are called the invariants of L. Observe that g32 − 27g23 6= 0.

Prove that given two complex numbers a2 and a3 satisfying a32−27a23 6= 0, there exist complex
numbers ω1 and ω2 such that ω1/ω2 is not real, and g2(ω1, ω2) = a2, g3(ω1, ω2) = a3.

Solution : Set α := (12)3
a32

a32−27a23
. First note that given a point z ∈ H, we can associate to it

the lattice Lz := Zz ⊕ Z. Then

g2(Lz) = 60
∑
m,n

1

(mz + n)4
= g2(z),

and the same goes for g3(Lz) = g3(z).

We know from Ex. 1 that there is exactly one point z ∈ F such that j(z) = α. Moreover, we
also know that if a2 = 0, this point must be z = %, and that if a3 = 0, this point must be z = i.
(The condition a32 − 27a23 6= 0 insures that the two complex numbers can not be both zero.)

Assume first that a2 = 0 and take λ ∈ C× such that λ6 = g3(%)
a3

. (Note that g3(%) is non-zero
since we know from Ex. 1 that g2(%) = 0 and ∆ is never zero.) Then

g3(λL%) =
g3(L%)

λ6
= a3

and g2(λL%) = a2 = 0. If a3 = 0, the same argument shows that g2(L) = a2 and g3(L) = a3

for L = g2(i)
a2

Li.
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Finally, suppose that a2a3 6= 0. Then j(z) = α is equivalent to

(12)3
g32(z)

g32(z)− 27g23(z)
= (12)3

a32
a32 − 27a23

which is equivalent to

a23
a32

=
g23(z)

g32(z)
=

g23(Lz)

g32(Lz)
=

g23(λLz)

g32(λLz)
,

for any λ 6= 0. now, take λ ∈ C× such that λ2 = a2
a3
g3
g2
. Then

a23
a32

=
g23(λLz)

g32(λLz)
=

(
a3
a2

)2 1

g2(λLz)
,

hence g2(λLz) = a2 and, similarly, one can show that g3(λLz) = a3. In terms of basis
elements (ω1, ω2), we can then choose the pair (λz, λ).

3. Let V = {(z, w) ∈ C2 : z3 − 27w2 = 0}. Let S3 denote the 3-sphere. Then T = V ∩ S3 is
the trefoil knot.

Prove that the space of lattices SL(2,Z)\SL(2,R) can be identified with the complement of
the trefoil knot S3\T .

Note : In fact, they are even diffeomorphic.

Solution : Each lattice can be written as Λ = Zω1 ⊕ Zω2 for a choice of basis (ω1, ω2).
A unimodular lattice is a lattice Λ of covolume 1, that is, vol(R2/Λ) = 1 or, equivalently,
det(ω1|ω2) = 1. (The notation (ω1|ω2) refers to the two-by-two matrix with ω1 and ω2 as
column vectors.)

We first show that the quotient SL(2,Z)\SL(2,R) parametrizes the set of unimodular lattices.
Any unimodular lattice can be seen to arise from an element of SL(2,R) via the map(

a b
c d

)
7→ Z

(
a
b

)
⊕ Z

(
c
d

)
=: Zω1 ⊕ Zω2.

This map then factors through the quotient SL(2,Z)\SL(2,R) as can be checked by direct
computation. This reflects the fact that if one takes another basis (ω′1, ω

′
2) for the unimodular

lattice Zω1 ⊕ Zω2 above, then the new basis elements can be expressed in terms of the old
ones, i.e.

ω′1 = aω1 + bω2

ω′2 = cω1 + dω2,

with a, b, c, d integer coefficients and a simple computation would establish that det(ω′1|ω′2) =
(ad− bc) det(ω1|ω2).
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In a similar fashion, one can show that the quotient PGL(2,Z)\PGL(2,R) parametrizes all
lattices up to homothety, that is the set of all equivalence classes [Λ] where Λ is a lattice and
[λΛ] = [Λ] for all λ ∈ R>0.

The claim is more transparent if we identify SL(2,Z)\SL(2,R) with PGL(2,Z)\PGL(2,R).
This identification is given by the map Λ 7→ [Λ]. In fact, each equivalence class has a unimo-
dular representative

1√
vol(R2/Λ)

Λ,

and for two images of this map such that [Λ] = [Λ′], there is a scalar λ > 0 such that Λ′ = λΛ.
But because vol(R2/Λ′) = λ2vol(R2/Λ) and both Λ, Λ′ are taken to be unimodular, λ = 1.

By Exercise 2, we know that the map

L → C2 \ V, Λ 7→ (g2(Λ), g3(Λ))

defined on the set L of all lattices is surjective. Consider the composition with the projection
to the 3-sphere, i.e.

L → S3 \K.
Then for two lattices Λ, Λ′ ∈ L with the same image in S3 \K, there must be some positive
scalar λ such that Λ′ = λΛ. We can conclude that SL(2,Z)\SL(2,R) ∼= S3 \K.

4. Prove Picard’s Theorem :

Every non-constant entire function attains every complex value with at most one exception.

Proof : We will prove the equivalent statement : Each entire function f that omits two distinct
points a, b ∈ C is constant.

The idea of proof is as follows : Given an entire function g that is never 0 or (12)3, the map
exp(i(j−1 ◦ g)) is entire and bounded to the unit disk, hence constant by Liouville.

The function
g = (12)3

f − a
b− a

is such a function ; it is entire and will never be either 0 or (12)3. We can see the j-function
j : H → C as an infinitely-sheeted branched covering map (indeed each α ∈ C has preimage
an infinite Γ-orbit), with branch points at j−1(0) and j−1((12)3). Hence, the restriction to

j : H \ {j−1(0), j−1((12)3)} → C \ {0, 1}

defines an infinitely sheeted unbranched covering. Fix a branch for the multi-valued inverse
function j−1. Then the composition map h := j−1 ◦ g : C → H \ {%, i} can be analytical-
ly continued to all of C, and this, by the Monodromy Theorem, as a single-valued analytic
function, which we also denote h.

Now, the map ϕ(z) = eih(z) is also entire but as |ϕ(z)| = e− Im(h(z)) and h(z) ∈ H, it
is bounded by the unit disk, and hence constant. It follows that h and hence g are constant,
therefore f = a+ (b− a)g is a constant function.
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