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Solutions 5

1. Let a := (a(n))n≥1 be a sequence of complex numbers. We say that the sequence a is mul-
tiplicative if a(mn) = a(m)a(n) for all coprime integers m,n (i.e. gcd(m,n) = 1 for all
m,n ≥ 1). The sequence a is called completely multiplicative if a(mn) = a(m)a(n) holds in
general.

Let σa ∈ R be such that

L(s) :=
∑
n≥1

a(n)

ns

converges absolutely on the half plane of convergence H(a) := {s ∈ C| Re(s) > σa}.

a) Show that if a is multiplicative, then

L(s) =
∏
p

∑
k≥0

a(pk)

pks


for all s ∈ H(a).

Solution : Recall the fundamental theorem of arithmetic and consider the set P (x, y) of
all natural numbers whose prime decomposition n = pk11 · · · pkmm is such that each prime
factor pi is bounded by x and all powers ki are bounded by y. Then∑

n∈P (x,y)

a(n)

ns
=

∑
n=p

k1
1 ···p

km
m

pi≤x, ki≤y

a(pk11 · · · pkmm )

(pk11 · · · p
km
m )s

=
∑(

a(pk11 )

pk1s1

· · · a(pkmm )

pkmsm

)
=
∏
p≤x

(
y∑
k=0

a(pk)

pks

)

where the second equality is obtained from the multiplicativity of a, and the third equality
from reordering the summands. For s ∈ H(a), the RHS is absoluetly convergent in x and
y and the claim follows.

b) Show that if a is completely multiplicative, then

L(s) =
∏
p

1

1− a(p)p−s

for all s ∈ H(a).

Solution : As a is completely multiplicative, a(pk) = a(p)k and the claim follows from
the limit formula for the geometric series.
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2. Let f R×+ → C be a continuous function such that f(y)ys−1 ∈ L1(R×+) for each

s ∈ 〈α, β〉 := {s ∈ C | α < Re(s) < β}

the fundamental strip determined by α < β ∈ R ∪∞. Its Mellin transform is defined by

M(f)(s) :=

∫ ∞
0

f(y)ys
dy

y

for all s ∈ 〈α, β〉.

a) Show thatM(f) is well-defined and holomorphic.

Solution : Set g(y, s) := f(y)ys−1 and for n ∈ Z>1 Gn(s) :=

∫ n

1
n

g(y, s)dy. Clearly

g(y, s) is holomorphic in s. Recall that for holomorphic functions g(y, s) (in s) we have:

d

ds

∫
A
g(y, s)dy =

∫
A

∂

∂s
g(y, s)dy =

∫
A

0dy = 0

So clearly Gn(s) is still holomorphic and limn→∞Gn(s) =Mf (s) =: G(s).
Moreover the Gn’s converges locally uniformly:
For s ∈ K (K compact) we have α < c1 < Re(s) < c2 < β for some constants c1 and
c2. So we have the following estimate:

|Gn(s)−G(s)| ≤
∫ 1

n

0
|g(y, s)|dy +

∫ ∞
n
|g(y, s)|dy

=

∫ 1
n

0
|f(y)|yRe(s)−1dy +

∫ ∞
n
|f(y)|yRe(s)−1dy

≤
∫ 1

n

0
|f(y)|yc1−1dy +

∫ ∞
n
|f(y)|yc2−1dy

Where the last expression tends to 0 (for n→∞) by our assumptions (c1, c2 ∈< α, β >
and g(y, s) ∈ L1(R+) with respect to y). So we have a uniform bound for |Gn(s)−G(s)|.
Hence the convergence is locally uniform. So the theorem of Weierstrass tells us thatG(s)
is holomorphic.

b) Prove the following identities forM(f) :

M(yνf(y))(s) = M(f(y))(s+ ν)

M(f(νy))(s) = ν−sM(f(y))(s)

M(f(yν))(s) =
1

ν
M(f(y))

( s
ν

)
M
(

1

y
f

(
1

y

))
(s) = M(f(y))(1− s)

d

ds
M(f(y))(s) = M(f(y) log y)(s)

M
(
d

dy
f(y)

)
(s) = −(s− 1)M(f(y))(s− 1)
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where ν > 0.

Solution :

M(yνf(y))(s) =

∫ ∞
0

f(y)ys+ν
dy

y
=M(f(y))(s+ ν)

M(f(νy))(s) =

∫ ∞
0

f(νy)ys
dy

y

(y′=yν)
= ν−s

∫ ∞
0

f(y′)y′s
dy′

y′
= ν−sM(f(y))(s)

M(f(yν))(s) =

∫ ∞
0

f(yν)ys
dy

y

(y′=yν)
=

1

ν

∫ ∞
0

f(y′)y′
s
ν
dy′

y′
=

1

ν
M(f(y))

( s
ν

)
M
(

1

y
f

(
1

y

))
(s) =

∫ ∞
0

1

y
f

(
1

y

)
ys
dy

y

(
y′= 1

y

)
=

∫ ∞
0

y′f(y′)y′−s
dy

y
=M(f(y))(1− s)

d

ds
M(f(y))(s) =

∫ ∞
0

f(y)
d

ds
ys
dy

y
=

∫ ∞
0

f(y) log yys
dy

y
=M(f(y) log y)(s)

M
(
d

dy
f(y)

)
(s) =

∫ ∞
0

d

dy
f(y)ys

dy

y
= f(y)ys−1|∞0 −

∫ ∞
0

f(y)(s− 1)ys−1dy

y

= 0− (s− 1)M(f(y))(s− 1)

3. Recall the Gamma function Γ(s) =
∫∞

0 e−tts dtt defined for all s ∈ C with Re(s) > 0. Prove
that

a) The function Γ(s) can be analytically continued to the whole complex plane into a mero-
morphic function whose poles are exactly non-positive integers and satisfies the functio-
nal equation Γ(s+ 1) = Γ(s).

Solution : One can prove directly Γ(s + 1) = sΓ(s) using the definition of Γ(s) and
integration by parts ;

Γ(s+ 1) =

∫ ∞
0

e−ttsdt =

∫ ∞
0

e−t(sts−1)dt = sΓ(s).

This allows to extend Γ(s) = 1
sΓ(s+ 1) to the whole complex s-plane, with simple poles

at each non-positive integer s = −n, n ∈ N0.

b) Show that the meromorphic continuation satisfies Γ(s) =
∑∞

k=0
(−1)k

k!(k+s) +
∫∞

1 e−yys dyy

and conclude that Res(Γ,−n) = (−1)n

n! .

Solution : ∫ 1

0
e−yys

dy

y
=

∫ 1

0

∞∑
k=0

(−1)k

k!
ykys

dy

y
=

∞∑
k=0

(−1)k

k!

∫ 1

0
yk+sdy

y

=

∞∑
k=0

(−1)k

k!

yk+s

k + s

∣∣∣∣1
0

=

∞∑
k=0

(−1)k

k!(k + s)
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Hence Γ(s) =
∑∞

k=0
(−1)k

k!(k+s) +
∫∞

1 e−yys dyy . Since the second part (the integral) is an
entire function on C we only have to consider the first part (the sum) for the residues:

Res(Γ,−n) = lim
s→−n

(n+ s)
∞∑
k=0

(−1)k

k!(k + s)
=
∞∑
k=0

(−1)k

k!
lim
s→−n

n+ s

k + s
=

(−1)n

n!

c) Prove the reflection formula Γ(1 − s)Γ(s) = π
sin(πs) and conclude that 1

Γ(s) is an entire
function of s.

Solution : Set g(s) := Γ(1−s)Γ(s)− π
sin(πs) . By part a) we have that g(s) is holomorphic

on C\Z. Let −n ∈ Z≤0. By task 3b we have:

Res(Γ(1− s)Γ(s),−n) = Γ(n+ 1)
(−1)n

n!
= (−1)n = Res

(
π

sin(πs)
,−n

)
Let n ∈ Z>0. By task 3b we have:

Res(Γ(1− s)Γ(s), n) = −(−1)n−1

(n− 1)!
Γ(n) = (−1)n = Res

(
π

sin(πs)
, n

)
So g(s) has removable singularities at s ∈ Z and is therefore an entire function. Note that

1
|sin(πs)| is bounded for |=(s)| > 1. Since s ∈ Z are the only poles inC of the continious
function sin(πs) we also have that 1

|sin(πs)| is bounded in any compactum which does not
contain elements of Z. So sin(πs) is bounded on C\D for any region D containing Z.
So by equation

|Γ(s)| ≤
∫ 1

0
e−yy

1
N
dy

y
+

∫ ∞
1

e−yyN
dy

y
(1)

we have that g(s) is bounded on< ε, 1−ε > for any ε > 0. But by the functional equation
Γ(1 − s) = 1

1−sΓ(2 − s) and the remarks above we see that g(s) remains bounded on
C\D. But the singularities at s ∈ Z are removable so g(s) is bounded around s ∈ Z and
thus bounded on C and therefore constant. Since limy→∞ g(s) = 0 we get g(s) ≡ 0.

By Euler’s reflection formula and the fact that sin(πs) is entire we immediately get that
Γ(s)Γ(1− s) 6= 0 on C. So Γ(s) 6= 0 on C. Hence 1

Γ(s) is entire.

d) Compute Γ
(

1
2

)
and prove the duplication formula Γ(s)Γ

(
s+ 1

2

)
= 2

1
2
−2s
√

2π Γ(2s).

Solution : By applying the reflection formula with s = 1/2, we obtain Γ(1/2) =
√
π .

We define the Beta function:

B(r, s) :=
Γ(r)Γ(s)

Γ(r + s)
=

∫ 1

0
zr−1(1− z)s−1dz
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The last equality follows from:

Γ(r)Γ(s) =

∫ ∞
0

∫ ∞
0

e−(u+v)ur−1vs−1dudv

(σ = u+ v)
=

∫
σ≥u≥0

e−σur−1(σ − u)s−1dudσ

(z = u
σ )

=

∫
0≤z≤1
u≥0

e−σ
(
zr−1σr−1

) (
(1− z)s−1σs−1

)
(σdzdσ)

=

∫ 1

0
zr−1(1− z)s−1dz

∫ ∞
0

e−σσr+s−1dσ

=

(∫ 1

0
zr−1(1− z)s−1dz

)
Γ(r + s)

If we make the substitution z = x2 we get:

B(r, s) =

∫ 1

0
x2(r−1)(1− x2)s−1(2xdx) = 2

∫ 1

0
x2r−1(1− x2)s−1dx

On the other hand if we set r = s and make the substitution z = 1+x
2 we get:

Γ(s)2

Γ(2s)
= B(s, s) =

∫ 1

−1

(
1 + x

2

)s−1(
1− 1 + x

2

)s−1(1

2
dx

)
=

1

2

∫ 1

−1

(
1 + x

2

)s−1(1− x
2

)s−1

dx

=
1

2

1

22(s−1)

∫ 1

−1
(1− x2)s−1dx = 21−2s

(
2

∫ 1

0
(1− x2)s−1dx

)
= 21−2sB

(
1

2
, s

)
= 21−2sΓ

(
1
2

)
Γ(s)

Γ
(
s+ 1

2

)
Where we used the previous result in the second last equality. If we solve this equation
for Γ(2s) using Γ

(
1
2

)
=
√
π we get:

Γ(2s) =
1√
π

22s−1Γ(s)Γ

(
s+

1

2

)
e) Show that

M
(
e−y

2
)

(s) =
1

2
Γ
(s

2

)
for any s ∈ H(0),

M
(

e−y

1− e−y

)
(s) = Γ(s)ζ(s) for any s ∈ H(1).

Solution : The first identity follows from the change of variables x = y2 and the domain
of definition remains the same.
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Let g(y, s) = e−y

1−e−y y
s−1. For y > 1 we have the bound |g(y, s)| ≤ e

e−1e
−yyRe(s)−1.

Let 0 ≤ y ≤ 1. Since 1 + y ≤ ey we have:

|g(y, s)| ≤ e−y

1− 1
1+y

yRe(s)−1 =
e−y(1 + y)

y
yRe(s)−1 ≤ 2e−yyRe(s)

Comparing both results we get for y ∈ R+: |g(y, s)| ≤ 2e−yyRe(s). Hence, < 1,∞ > is
the fundamental strip for e−y

1−e−y .

By the second property of exercise 2b we have:

M
(

e−y

1− e−y

)
(s) =

∫ ∞
0

∞∑
n=1

e−ynys
dy

y
=
∞∑
n=1

M(e−yn)(s) =
∞∑
n=1

n−sM(e−y)(s)

= ζ(s)Γ(s)

4. a) Take a modular form f ∈Mk(Γ) with q-expansion f =
∑
a(n)qn. Let χ be a character

mod p, where p is a prime, and set

fχ(z) =
∑

a(n)χ(n)qn.

Show that fχ ∈Mk(Γ0(p2), χ2), i.e.

fχ(γz) = χ(d)2(cz + d)kf(z).

Moreover, show that if f ∈ Sk(Γ), then fχ ∈ Sk(Γ0(p2), χ2).

Solution : We twist fχ by the Gauss sum G(1, χ) and obtain (recall ex 1, serie 4)

G(1, χ)fχ =
∑
n≥0

(G(1, χ)χ(n)) a(n)qn =
∑
n≥0

G(n, χ)a(n)qn

=
∑
n≥0

 ∑
m mod p

χ(m)e
2πinm

p

 a(n)qn =
∑

m mod p

χ(m)f |k
(

1 m/p
1

)
.

Let γ =

(
a b
c d

)
∈ Γ0(p2). We will show that

G(1, χ)fχ|kγ = G(1, χ)χ(d)2fχ.

Observe that (
1 m/p

1

)(
a b
c d

)
=

(
a+ m

p c b+ dm
p

c d

)
.

This product might not be in Γ0(p2) since the upper right entry is not necessarily integral.
However,(
a+ m

p c b+ dm
p

c d

)(
1 −d2m

p

1

)
=

(
a+ m

p c b− bcdm
p − cd2m2

p2

c d− m
p d

2c

)
=: γ′ ∈ Γ0(p2).
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It now follows that

G(1, χ)fχ|kγ =
∑

m mod p

χ(m)f |kγ′
(

1 d2m
p

1

)
= χ(d)2

∑
k mod p

χ(k)(f |kγ′)|k
(

1 k
p

1

)
= χ(d)2G(1, χ)(f |kγ′)χ = χ(d)2G(1, χ)fχ.

Finally, one can read immediately from the q-expansion for fχ that it is holomorphic at
infinity (resp. vanishes at infinity) if f does.

b) Given N a positive integer, let ωN :=

(
−1

N

)
. Show that ωN normalizes Γ0(N) and

that if f ∈Mk(Γ0(N)), then

f |ωN = N−k/2z−k/2f

(
−1

Nz

)
is also inMk(Γ0(N)).

Solution : The direct computation(
1

−N

)(
a b
c d

)(
−1

N

)
=

(
dN −c
−bN2 aN

)
=: γ′,

once you divide both sides by N proves that ωN normalizes Γ0(N).

Let γ ∈ Γ0(N), then

f |ωNγ = f |ωNγ = f |γ′ωN = f |ωN .

c) Let f ∈ Sk(Γ), and let χ be a character mod p. Show that fχ|ωp2 = τ(χ)2

p fχ, where
τ(χ) = G(1, χ) denotes the Gauss sum.

Solution : We know from last exercise sheet that |G(1, χ)| = p. We show the therefore
equivalent statement

|G(1, χ)|fχ|ω2
p

= G(1, χ)fχ.

By the same computation that in part a), we can show that

G(1, χ)fχ =
∑

m mod p

χ(m)f |k
(

1 m/p
1

)
= G(1, χ)fχ.

It follows from the direct computation(
1 m/p

1

)(
−1

p2

)(
1 −m/p

1

)
=

(
mp −1−m2

p2 −mp

)
=: γ ∈ Γ

that

f |k
(

1 m/p
1

)(
−1

p2

)
= f |kγ

(
1 m/p

1

)
= f |k

(
1 m/p

1

)
and we conclude.
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5. Let again f ∈ Sk(Γ), and let χ be a Dirichlet character mod p. Set

L(f, χ, s) =
∑
n≥1

a(n)χ(n)

ns
and Λ(f, χ, s) =

( p
2π

)s
Γ(s)L(f, χ, s).

Prove the functional equation Λ(f, χ, s) = ik τ(χ)2

p Λ(f, k − s, χ).

Solution : Consider the function f̃χ(y) := fχ(iy). Then

M(f̃χ)(s) =

∫ ∞
0

fχ(iy)ys
dy

y
= (2π)−sΓ(s)L(f, χ, s).

On the other hand, we obtain from the change of variables y = 1/(p2u) that

M(f̃χ)(s) = p−2s

∫ ∞
0

fχ

(
i

p2u

)
u−s

du

u
.

From Ex. 4, part c), we know that

fχ|ω2
p
(iu) = (ipu)−kfχ

(
i

p2u

)
=

τ(χ)2

p
fχ(iu)

hence

M(f̃χ)(s) = p−2s(ip)k
τ(χ)2

p

∫ ∞
0

fχ(iu)uk−s
du

u
= p−2s(ip)k

τ(χ)2

p
M(f̃χ)(k − s)

that is,

(2π)−sΓ(s)L(f, χ, s) = p−2s(ip)k
τ(χ)2

p
(2π)−(k−s)Γ(k − s)L(f, χ, k − s).

This equality is equivalent to Λ(f, χ, s) = ik τ(χ)2

p Λ(f, χ, k − s).


