D-MATH Modular Forms HS 15
Prof. Ozlem Imamoglu

Solutions 5

1. Let a := (a(n)),>, be a sequence of complex numbers. We say that the sequence a is mul-
tiplicative if a(mn) = a(m)a(n) for all coprime integers m,n (i.e. ged(m,n) = 1 for all
m,n > 1). The sequence a is called completely multiplicative if a(mn) = a(m)a(n) holds in
general.

Let 0, € R be such that

converges absolutely on the half plane of convergence H(a) := {s € C| Re(s) > 0,}.

a) Show that if a is multiplicative, then

a k
v =TT [ S5

p k>0

forall s € H(a).

Solution : Recall the fundamental theorem of arithmetic and consider the set P(z,y) of
all natural numbers whose prime decomposition n = plfl ---phm is such that each prime
factor p; is bounded by = and all powers k; are bounded by y. Then

3 a(n) _ 3 a(py" - phr)

k km,
k1. . km (pll ©Pm )S

pi<z, ki<y
k Y
= (a(pf) ,..a(pfnm)> 1] (Z a(p"’)>
- k1s km s - ks
P Pm p<z \k=0 p

where the second equality is obtained from the multiplicativity of a, and the third equality
from reordering the summands. For s € H (a), the RHS is absoluetly convergent in x and
y and the claim follows.

b) Show that if a is completely multiplicative, then

16 =Ty,

(p)p—*

forall s € H(a).

Solution : As a is completely multiplicative, a(p*) = a(p)"* and the claim follows from
the limit formula for the geometric series.
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2. Let f R} — C be a continuous function such that f(y)y*~' € L' (RY) for each
s€(a,p) ={seC | a<Re(s) <p}

the fundamental strip determined by o < 8 € R U oo. Its Mellin transform is defined by

M= [
forall s € (a, ).

a) Show that M (f) is well-defined and holomorphic.

n

Solution : Set g(y,s) := f(y)y* ! and for n € Z+1 Gp(s) = /1 9(y, s)dy. Clearly

n

9(y, s) is holomorphic in s. Recall that for holomorphic functions ¢(y, s) (in s) we have:

d 0
dsAg(y,S)dy—A%g(y,S)dy—/AOdy—O

So clearly G, (s) is still holomorphic and lim,, o Gn(s) = M¢(s) =: G(s).

Moreover the G,’s converges locally uniformly:

For s € K (K compact) we have o < ¢1 < Re(s) < ¢g < 3 for some constants ¢; and
c2. So we have the following estimate:

o0

Gu(s) — G(s)] < /0 " oy, 9)ldy + / 19y, )|dy

n o)
:/ ’f(y)’yRe(s)_lder/ | (y)yRee) L dy

0 n
oo

% c1—1 co—1
< /0 F)ly™dy + / £ )y dy

n

Where the last expression tends to 0 (for n — c0) by our assumptions (¢, ca €< a, 5 >
and g(y, s) € L*(R*) with respect to ). So we have a uniform bound for |G, (s) —G(s)|.
Hence the convergence is locally uniform. So the theorem of Weierstrass tells us that G(s)
is holomorphic.

b) Prove the following identities for M(f) :

M@ f)(s) = M{F () (s +v)
M(f(vy))(s) = v>M(f(y))(s)

1 1
M <yf (y (s) = M(F@)(1—s)
M) = M) log)(5)
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where v > 0.

Solution :

M F))(s) = /

g

f(y)y‘””i‘y = M(f(y))(s+v)

M) = [ 10 2 [T = st
ey — [ s =) L sdy 1 s
MU = [ w20 = e (2)
LY gy o [ (L) oy ) ey iy
m(r(3)) o= yf(y)yy - /Oyf(y)y Y- MU -
MU = [T 10 = [ ruog Y = M) logn)(o
d > d s _ s—1j00 5— dy
M (5 1w) 6= [ ™ = o - [ - v
—0— (s — DM(f()(s — 1)

3. Recall the Gamma function I'(s fooo e tsdt dt defined for all s € C with Re(s) > 0. Prove
that

a) The function I'(s) can be analytically continued to the whole complex plane into a mero-
morphic function whose poles are exactly non-positive integers and satisfies the functio-
nal equation I'(s + 1) = I'(s).

Solution : One can prove directly I'(s + 1) = sI'(s) using the definition of I'(s) and
integration by parts ;

I'(s+1) :/ e Hsdt :/ e H(stHdt = sI'(s).
0 0

This allows to extend I'(s) = %F(S + 1) to the whole complex s-plane, with simple poles
at each non-positive integer s = —n, n € Nj.

b) Show that the meromorphic continuation satisfies I'(s) = > 2, k, = +S y + S e vy &y
(="

and conclude that Res(I", —n) = *—

Solution :

1 1 o k 00 kol
_y sy -1 sdy -1 dy
[l [S L ety S [
0 Yy 0 = Kl Y kb Jo Yy
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Hence I'(s) = Y_,2, k,(k+s + fl e‘yyS 4 Since the second part (the integral) is an
entire function on € we only have to con51der the first part (the sum) for the residues:

S—>—n

& _1\k X 1\k n4s _1\n
Res(I', —n) = lim (n+s) Z k:'((kljzs) = Z ( 1) lim s _ ( 1)
k=0

Prove the reflection formula I'(1 — s)I'(s) =
function of s.

Solution : Set g(s) :=T'(1—s)['(s)— Sm’gim) By part a) we have that g(s) is holomorphic
on C\Z. Let —n € Z<q. By task 3b we have:

—7T— and conclude that 1s an entire
sm(ﬂ's) ( )

Res(T'(1 — $)T(s), —n) = T(n + 1) 2" = (—1)" = Res <bln?7rs) —n>

Letn € Z~q. By task 3b we have:

(1! "
Res(I'(1 — s)I =———I'(n)=(-1)"=Res | ———
es(D(1 = $)0(s),m) = g D) = (~1)" = Res (s
So g(s) has removable singularities at s € Z and is therefore an entire function. Note that
Wlws)l is bounded for |3(s)| > 1. Since s € 7 are the only poles in C of the continious

function sin(ms) we also have that is bounded in any compactum which does not

|szn(7rs)|
contain elements of Z. So sin(7s) is bounded on C\ D for any region D containing Z.

So by equation
1 o]
d d
rel< e [Tem Y 1)
0 ) 1 Y

we have that g(s) is bounded on < &, 1—¢ > forany £ > 0. But by the functional equation
I'(1 —s) = {£-I'(2 — s) and the remarks above we see that g(s) remains bounded on
C\ D. But the singularities at s € 7Z are removable so g(s) is bounded around s € 7 and
thus bounded on C and therefore constant. Since lim, ., g(s) = 0 we get g(s) = 0.

By Euler’s reflection formula and the fact that sin(ﬂs) is entire we immediately get that
I'(s)I'(1 —s) # 0on C. So I'(s) # 0 on C. Hence ( () 18 entire.

Compute I' (1) and prove the duplication formula I'(s)I" (s + 3) = 23725\/27 T (2s).

Solution : By applying the reflection formula with s = 1/2, we obtain I'(1/2) = /7.
We define the Beta function:

I'(r)[(s)

1
B(r,s) = F((r—l—s) = /0 27N = 2)*dz
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The last equality follows from:
o0 oo
L(r)T'(s) = / / e~ )y 1y dudu
o Jo
( )

o=u—+v _ _ _
= / e %u" (o —u)* tdudo
o>u>0

1 e
:/ 21— Z)Sldz/ e 90" do
0 0

_ (/01 (1= z)“’ldz> T(r + s)

2

If we make the substitution z = x* we get:

1 1
B(r,s) = / 22001 — 22)" 1 (2udx) = 2/ 21— 2?5 e
0 0

On the other hand if we set r = s and make the substitution z = HTI we get:

I(s)? AT AN 1+z\* ' /1
T'(29) —B(s,s)—/_1 5 1-— 5 id:r
1/1 <1+$)81<1—x>31
== — dx
2] .\ 2 2
11 ' 2\s—1 1-2 ! 2\5—1
= —— 1—2%) de =277 2/ 1—a%)°" dl’)
e (2 [ a-a

Cicasn (1) oias T (5) T(s)
() st DR

Where we used the previous result in the second last equality. If we solve this equation
for ['(2s) using ' () = /7 we get:

I(25) = \/17?225_1F($)F <s 4 ;)

e) Show that

M (e*y2> (s) = %F (g) for any s € H(0),
M (1 f_jy) (s) = T(s)C(s) for any s € H(1).

Solution : The first identity follows from the change of variables = = y? and the domain
of definition remains the same.
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a)

Let g(y,s) = —~—y° 1. For y > 1 we have the bound |g(y, s)| < —t-e ¥yRe(s)—1,

T—e—v e—1

Let 0 <y < 1.Since 1 +y < e¥ we have:

—y ~y(1
|g(y’ S)| < c 1 yRe(S)fl = MyRe(S)*l < 2€fnye(s)

T Thy Y

Comparing both results we get for y € R*: |g(y, s)| < 2¢ YyR°(). Hence, < 1,00 > is

the fundamental strip for 5 ez
—€

By the second property of exercise 2b we have:

¢’ = Ooooe_y" s@: 3 e ") (s) = Oon_s e Y)(s
M) e= [ S ey = S ME ) = Yo M
— (5)T(s)

Take a modular form f € My(I") with g-expansion f = > a(n)q". Let x be a character
mod p, where p is a prime, and set

Show that f, € My (To(p?), x?), i.e.

fx(vz) = x(d)*(cz + d)F f(z).

Moreover, show that if f € S(T), then £, € Sk(Lo(p?), X?).
Solution : We twist f, by the Gauss sum G(1,) and obtain (recall ex 1, serie 4)

G(LX) e = Y (G, 0)x(n) aln)g" = Y G(n,x)a(n)g"

n>0 n>0
=3[ 2w et = X wmi (U ).
1
n>0 \ m mod p m mod p

Lety = (CCL Z) € T'o(p?). We will show that
G(LX)flky = GLX)x(d)* fy-

(C)E Y- )

This product might not be in T'g(p?) since the upper right entry is not necessarily integral.
However,

4 om m bcdm cd®m?
5 ) () (2 )
c d 1 d—5d

Observe that

C Cc
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b)

It now follows that

k
ok = 3w (117 = v 3w (* 1)

m mod p k mod p
= x(@)’GLX)(f ) = X(d)*C(1, %) fy.

Finally, one can read immediately from the g-expansion for f, that it is holomorphic at
infinity (resp. vanishes at infinity) if f does.

Given N a positive integer, let wy =

thatif f € M (I'o(N)), then

flow = NH2b2p (1)

N _1> . Show that wy normalizes I'g(/N') and

Nz
is also in My(T'o(N)).

Solution : The direct computation

o DE DG - (B ) =

once you divide both sides by N proves that wx normalizes ['o(N).
Let v € I'g(IN), then

f‘wN’Y = f‘wN’Y = fh/wN = f‘WN'

Let f € Si(I"), and let x be a character mod p. Show that fx’wpa = 7(2)2 f» where
7(x) = G(1, x) denotes the Gauss sum.

Solution : We know from last exercise sheet that |G(1, x)| = p. We show the therefore
equivalent statement

|G(17X)|fX’w12, = G(L X)fY'

By the same computation that in part a), we can show that

cuof = X xmifi(t ") = G

m mod p

It follows from the direct computation

() )0 )= G ) e
() (G ) = () = ()

and we conclude.

that
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5. Let again f € Si(T"), and let x be a Dirichlet character mod p. Set

L(faXvs) = ZM and A(faXvs) = (ﬂ)SF(S)L(faXﬂg)'

n 2w
n>1

Prove the functional equation A(f, x, s) = ikT(p%FA(f, k—s,%).

Solution : Consider the function fx(y) := fy(iy). Then
~ 0o d
M) = [ Ry = @ TEL ).
0 Yy

On the other hand, we obtain from the change of variables y = 1/(p?u) that

M) = 5 | S (pu> ——

From Ex. 4, part ¢), we know that

') 7(x)?
Rt = G () = " i)

pu

hence

2

—~ T(x)? [ U T —~
M) = o722 T [ el 0 = i T MR k- o

that is,

2

(2m)*T(s)L(f, x,s) = p—zs(ip)ﬂ(x)

" @2m)~ =T (k — $)L(f, X, k — s).

This equality is equivalent to A(f, x, s) = z"”(p%)g/\(f, X,k — s).



